Stratified mulai flops of derived equivalences Flops + derived equivalences Cautis - Flops 2 about... Atiyan flos: Z= {xy-wz} C A4. O(4,-1) = 10/1 (30 odp Y= X \*, X Bortal - orlar: (TC), T: Db(X) - Db(X') 6 (Ti)\_(TL-) OO(k,L)) D(X)=20,0p3 ~ 20,000) [xt. (0000), 000(11) = 0 if k=0 => D(N)= D(A-mal) 0 (1-6 K1,91 F 1-> Hul00001,F) to 9, 90 = 90 9, Xo ~ X= X X/ 7= 50, 2= 8 % W- Yo \$ X1 => Ky= ZW

0 -> O(1) -> O(2)
u-exam

ls chalf

flop = birdiand, kx=kx ie. XY st. 1 kx = (1) kx Then: true in 31. /k - equivalence Thm: (kaledin) True for symplectic resolutions of the symplectic singularities.  $Op \in D^b(x)$ is 3-spherical.  $X = (ab - cd) \leq A^4$ (T'\*) (T) = Flop · Flop ≠ idpox = Splereical twist C4/2 with wts a= xs t1 t1 -1, -( x y s t 5 = y t 2 GIT quotients C= xC  $p'_{x,y} \subseteq X = \left(C^{\dagger} \setminus \{x=y=0\}\right)/C^{\star}$ d = 42 

Hom (V. L.) & Hom (L, V) / GL(L) & Standard Com (L, V) / GL(L) & C\*

$$X = \text{Tot} \left( \text{Hom}(L, V) \longrightarrow PV' \text{ (Id subspace of } \check{V}) \right)$$

$$= \left( V \longrightarrow L, \text{ d} : L \longrightarrow V \right)$$

$$X' = Tot (Hom(V, L) \longrightarrow PV)$$

$$= \{ L \subseteq V, \beta : V \rightarrow L \}$$

$$Y = \{ V \Rightarrow L, M \subseteq V, \beta : L \rightarrow M \}$$

$$P' \times P' \qquad line bundle \qquad foper L \searrow \chi' \qquad Long M$$

{ [ k = | } = 2 = (ab - cd) = 12 = Hanly, V)

$$D_p(x) \longrightarrow D_p(x, x)$$

## Gtill have Y= X x X

 $T^* p^n \longrightarrow O(4)^n \longrightarrow O$   $\times q$ 

Q\(\d=0\)/a\* CX'

II

T(PV)

T'(IPV) = {V>L, x:L>V, L>V-L }

T'(PV) = {MEV, B:V-M, Meker} {

i.e. M->V->M

is zero

both up to 
$$\langle rk \leq 1 \rangle \subseteq \langle rk$$



Rlue component is the line bundle on F(L1, n-1, V)

9[(1)  $2 \times_0 = \{ rk \leq l \}$   $2 \times_0 = \{ rank \leq l \}$   $\{ rank \leq$ is a VB on PV  $\Rightarrow Y_{+}=\{Lckerd\}$ fibe is  $Hom(V, L) = \partial(-1)^{\oplus n}$  VB on PV or  $X = \{V \rightarrow Q \ Q \rightarrow V\}$  VB on PV',

elt of PV'  $Y = \{imp \in H\}$ , fibre is  $Hom(Q, V) \subseteq O(-1)^{6n}$ . or X= {LCV, V > Q, Q -> L} line bundle Loo Q' on propu Y= |LGY → Q is tero|

if LaH line bundle

On FL(1, n-1, V) OC-1, -1) House Black X are GIT quots of Hom (L, V) & Hom (V, L)/GL(L) ie. C'1/4\*

## $\underline{\text{Thm}}: (BO) \qquad D^b(X_{\tau}) \longrightarrow D^b(X_{-})$ Via (T\_), (T\_1)\*.



doesn't give derived equivalence



this gives derived equivalence

$$X_0 = \{ rk \le k \}$$
  
Singular along  
 $rk \le k-1$ 

Thm (S-D): 
$$D^b(x_+) \xrightarrow{\sim} D^b(x_-)$$
  
Ballard-...



Yo = 
$$\{3 \text{ rank} \le k, 3^2 = 0\}$$

Nilpotent orbit closure

Y+=  $\{S \subset \ker A\} \setminus VB \text{ on } Gr(k,V)$ 

=  $T'Gr(k,V)$ 

The is  $Hom(Y_S,S)$ 

$$Y = T \cdot hr(V, k)$$
 or stratified Mukai flap "
$$Y = \{S \hookrightarrow V \longrightarrow Q : S : 2eo, Q \xrightarrow{S} S \} \subset X$$

$$VB \text{ over } F((k, n-k, V))$$

$$er(k, V) \times 6r(V, k)$$

Thm (Cantis-Kamitzer-Licata)

I reflexive sheaf on  $Y_{+} \times_{Y_{0}} Y_{-}$  giving  $D^{b}(Y_{+}) \xrightarrow{\sim} D^{b}(Y_{-})$ 

$$X \longrightarrow Ant(X)$$
  $\Rightarrow f$ 

$$D^{b}(x) \longrightarrow Ant(D^{b}(x)) \Rightarrow f_{*}$$

$$UI$$

$$Z_{GJ}, PIC(X)$$

$$Z \times (Aut(x) \times Pic(x)) \subseteq Aut(D^b(x))$$
  
 $\underline{Thm}: (Bondal - Orlov)$   
This is an equality if  $W_x$  is (anti) auple.

Q: What if Wx = Ox? Sphereial objects: (Siedel - Thomas) EED(X) is spherical · EOW, AE - Hom (E, E[n]) = { ( if n=0, dim X otherwise) (=> HomilE, E) = Hilsdimx, (C) Ex: Cape, acc, Ozis spherical · Tot (U(-1) ) ~ On is splesial (Koszul tes SC (1) (Dn+1) · S surface, CES -2-cure Ocis spherical · X is strictly CY (i.e. H'(X, Ox)=0 unless i=0, dim X) => every line bundle is sphesical,

Def : 
$$T_{E}(M) := cone(RHom(E,M) \otimes E eV) M$$
)

 $M \in D^{b}(X)$ 

The opherical twist around  $E$ 
 $Thm : T_{E}$  is an anteq

 $EX : T_{E}(E) = cone(E \oplus E E - 1) \longrightarrow E) \cong E \overline{U} - 1$ 
 $-If RHom(E,M) = 0$ ,  $T_{E}(M) \cong M$ .

 $(X,W) \qquad X'$ 
 $DFuk(X,W) \cong D^{b}(X')$ 
 $Color : Logranges in X \longrightarrow Dehn twise$ 

1. 
$$O_{z}$$
 is spherical  $T_{O_{x}} \simeq - \otimes O_{c}(-x)$ 

(suppose)  $f_{x}(-\otimes L)[P] \simeq T_{E}(-)$ 
 $f_{x}(M\otimes L)[P] \simeq M$  if  $RHom(E, M) = 0$ 
 $\Rightarrow P = 0$ 
 $f_{x}(E\otimes L) \simeq E[I-d_{Im}X]$  capple to  $E$ 
 $d_{Im}X > I$  .  $X$ .

 $X_{\pm} = Tot(O_{p}(-1)^{\otimes 2})$  Tot( $O(H, -I)$ )

 $R_{p} = Q_{x}p^{x}P_{x}Q^{x}G$  Aut( $D^{b}(X_{+})$ )

Theorem: (Segal) Every autoey is a spherical twist.)

Tr (M) - M - RHom (M, E) & E

Thm: 
$$\Phi \simeq T_{op}^{\dagger}(-1)$$

Pt:  $O \otimes O(-1)$ 
 $\overline{\Phi}(O) \cong O$ 
 $\overline{\Phi}(O(-1)) = Q_{x} p^{x} p_{x} (O(0,-1))$ 
 $= Q_{x} p^{x} (O(1))$ 
 $= Q_{x} p^{x} (O(1))$ 
 $= \overline{\Phi}(O(1,0))$ 
 $=$ 

$$P^{m}-\text{diject} \qquad Han(E,E) \cong H(P^{n},C) \qquad \qquad Pis a p^{m}-\text{obj} \qquad t: P \to P[z]$$

$$|S| \qquad |R Hom(P,M)E^{2}] \otimes P \to R Hom(P,M) \otimes P \to M$$

$$|C[t]/t^{m+1} \qquad deqt = 2 \qquad \qquad |P_{p}(M)$$

$$|E| \qquad a \text{ new autoeq.} \qquad (Huybreches - Thomas) \qquad if m=1, P: s 2-spherical => T_{p}^{2} \cong P_{p}$$

$$|D(C(E)) \to D(C)$$

$$|deqt=2 \xrightarrow{\text{deq}} P$$

Braiding: E, F 
$$\in$$
 D<sup>b</sup>(x), spherical abject

After (E,F)=0 =>  $T_ET_F \cap T_F \cap T_E$ 

RHom (E,F)=C =>  $T_ET_F \cap T_F \cap T_$ 

Geometric Categorical action of 
$$S_{L}$$
 on  $T^*Gr(k, n)$ 

1. Reps of  $S_{L}$ 

$$E = (0), F = (0), H = (0)$$

$$F = (0), H = (0)$$

By Mumford's Griterian. (ij) is semi-stude => i is injective.  $M_{\mathbf{p}} = \{ i : C^{\mathbf{k}} \longrightarrow C^{\mathbf{n}}, \lambda \in \overline{B(\mathbf{k})} \}$ = Thr (k,n) = Hom (C/V, V) · 0<0, Ma= (j: c'->ck, BEB(K)) ~ Tt Gr(n-k, n) Steinlerg var  $Z(k_1, k_2) = \{(V_1, V_2, X) \mid \bigcup_{V_1}^{Im} X \}$   $= |\{(V_1, V_2, X) \mid \bigcup_{V_2}^{Im} X \}$   $= |\{(V_1, V_2, X) \mid \bigcup_{V_1}^{Im} X \}$   $= |\{(V_1, V_2, X) \mid \bigcup_{V_2}^{Im} X \}$ 

T'Gr(k,n) X T'Gr(k,.n)

Hecke Correspondence.

 $B_{k} = \{ V_{1} \stackrel{\text{codin}}{\longrightarrow} V_{2} \}$   $\subset T^{*}G_{1}(k,n) \times T^{*}G_{1}(k+1,n) \longrightarrow Z(k,k+1)$ 

$$F_{\lambda+25}^{(\lambda+5)} := \mathcal{O}_{\lambda+25}^{\lambda+5} \otimes \det(V_2/V)^5$$

$$F_{\lambda+25}^{(\lambda+5)} := \mathcal{O}_{\lambda+25}^{(\lambda+5)} * \mathcal{E}_{\lambda}^{(5)} \qquad \mathcal{E}_{\lambda}^{(5)} \times \mathcal{E}_{\lambda}^{($$

(Cautis)

2. 
$$Z_s$$
 only intersect  $Z_{s-1}^s$  and  $Z_{s-1}^s$   $Q_s := Z_s \cap Z_s \cap Z_{s-1}^s$ 

 $Q_{2}$  ([D<sub>3</sub>] - [D<sub>3</sub>])  $\simeq$  det. ( $Q_{1}^{n}$ )  $\otimes$  det.( $Q_{2}$ )

Glue line bundle  $Q_{2}$   $\otimes$  det.( $Q_{1}^{n}$ )  $\otimes$  det.( $Q_{2}^{n}$ ) on  $Q_{3}^{6}$ to a line bundle on  $Q_{2}$   $\otimes$  ( $Q_{3}^{n}$ )  $Q_{3}^{n}$   $Q_{4}^{n}$   $Q_{5}^{n}$   $Q_{5}^{n}$ 

| Nakajima's quiver varieties & kac-Moody actions                                                                                                                                                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| with a view toward/from Symplectic resolution theory                                                                                                                                                    |
| Main ref: Lectures on Nakajima's quiver varieties by Victor Ginzburg. (And the reference those)                                                                                                         |
| What do ne do:                                                                                                                                                                                          |
| From Wei's talk, there were 3 things.  1) View things as special cases of Nortajina's quiver varieties, then apply Nakajina's results.                                                                  |
| 2) Categorify (CKL)                                                                                                                                                                                     |
| 3) Do gonetry? (c)                                                                                                                                                                                      |
| In this talk, we focus on 1), with emphasis on the symp rosolution point of view.                                                                                                                       |
| More precisely no are going to define general Natajiness  quiver varieties and study their (symplectic) geometric  preparties. Examples includes: Hill All  circ or |

· Take "Cotangent space", i.e., double the aurow



Runk: A few ways of thinking about framing:

- 1) Nakajina was a differential geometer at one point, Studied Gauge the my >> ADHM equation: [x,y] + ij = 0 this + ij term only appears when you have frawing.
- 2) Thinking quiver varieties as moduli spaces, from is like

"marked points" or "bundles with a choice of trivialisation".

3) (praticul reason), if no flowing, the variety is o most of the time.

Nakajina quiver variety.

for every vertice  $i \in I$ , & framing  $i \in Q^2$ , chose a number  $N_{20}$ , i.e.  $V.W \in \mathbb{N}^{I}$ . (Think, V.W as Hilbert pages?) The space of all reps of the quiver is:

Rep (Q, V, W):= ⊕ Hom (V; V; ) ⊕ ⊕ Hom (V; W;)

(F) (Hom/W:, V;)

where dim V; = v;

There is a GL(V) = A GL(Vi) action on it,

 $g \cdot (x, y, i, j) = (g \times g^{\dagger}, g y g^{\dagger}, i g^{\dagger}, g j)$ There is G - eq ivaried moment map

Mi Rep (QO, L, w) > 9, 2 g

(x, y, i, j) ~> Z [x, y] + ji (AOHM)

So given 
$$\lambda \in Z(O_V)$$
,  $D: GL(V) \rightarrow C^*$ 

Def.  $M_{\lambda, \theta}(Q, \underline{v}, \underline{w}) := \mu^{-1}(\lambda) /\!\!/_{GL(V)}$ 

We nosely ansider the case  $\lambda = 0$ .

King's Stability:  $(x, y, i, j) \in pi'(N)$  is  $\theta$ -semistable

iff  $\forall S, \subseteq V_i$  which is stable under the waps  $x \notin y$ , we have  $S: \subseteq \ker j: \forall i \in I \Rightarrow \theta \cdot \dim_{I} S \leq 0$   $S: \supseteq \operatorname{Image}[i], \forall i \in I \Rightarrow \theta \cdot \dim_{I} S \leq \theta \cdot \dim_{I} V$ Example:  $\theta = \theta^{\dagger} = (1, \dots, 1)$ 

seristable means that  $x_i \notin j$  are injections [Na]  $M_{0,\Theta}t = T^*FL(\Gamma, \mathbb{C}^n)$ 

 $T^*F((r,C)) \longrightarrow X \qquad \text{is smjertive when}$   $\Gamma - V_1 \supseteq V_1 - V_2 \supseteq V_3 \supseteq \cdots \supseteq V_{n-1} - V_n \supseteq V_n Z_n = V_n \supseteq V_n Z_n = V_n \supseteq V_n \supseteq V_n = V_n$ 

Then any pt is  $\Theta$ -semiotable.

What is  $M_{0,0}$ ? (some kinds of hispotent orbit closure...)  $\Theta = \Theta = \{1, ..., -1\}$ Enistable means that  $Y: Q \mid \text{ are surjections}$   $\longrightarrow M_{0,6} = T^* F_1(r, c^n)$ but now "flags" are  $C^n \gg C^{v_1} \rightarrow C^{v_2}$ ...

Where is the sympology geo?

The claim is that Mo,0 -> Mo,0 is an example of a symplectic singularity, & in many cases, a symplectic resolution.

Def: Let X be affire normal Poisson variety.

Def. Let X be typic normal poisson variety.

The  $X \to X$  is a symplectic resolution if X is smooth symplectic St.  $X \to X \to X$  as a poisson edgebra, and a resolution of singularities,

Quote: Symplectic resolutions are the Lie algebras of the Properties: 21st Century - Okounkov.

- 1) Sewismall:  $dim(X \times_X X) = dim X$ Therefore dim of itsed components & dim X
- 2) X is a union of finitely many symplectic leaves X = LIXa, each Xx is locally closed smooth
- 3) In the case of a conical symplectic resolution Cie, that there are a actions on X and X, such that I is equivarient, and contracts X to a point o then  $\mathcal{R}'(0)$  is a honotopy retreat of  $\widehat{X}$ , and  $H'(X,C) \cong H'(\overline{L}'(0),C)$
- 4) More generally, Total any point) is isotropic (in the sense of synthertic geo)

When is Ma, 6(v, v) -> Ma, a symplectic resolution? Answer: (Almost always) when (x,0) is v-regular;

## $(\lambda, \theta) \in \mathbb{C}^{\perp} \times \mathbb{Z}^{\perp} \subseteq \mathbb{C}^{\perp} \times \mathbb{R}^{\perp} \cong \mathbb{R}^{\perp} \times \mathbb{R}^{\perp} \times \mathbb{R}^{\perp}$ $\cong \mathbb{R}^{3} \otimes \mathbb{R}^{\perp}$

Let R= [a G Z 1/10] | CQ V. V & 2 VIGI

This is the set of roots, When Q:5 Dynkin or affine Dynkin, this coincides with the usual roots.

CQ is the cartan matrix,  $C_Q := 2I - A_Q$ ,  $A_Q$  is the adjacency matrix.

Back to the example, we had

$$Q = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \end{pmatrix}$$

and R'= { t(e;-e;)}

for  $\alpha \in \mathbb{R}^{I}$ , write  $\alpha^{\perp} := \{\lambda \in \mathbb{R}^{I} \mid \lambda \cdot \alpha = 0\}$  $(\lambda, \theta)$  is  $\nu$ -regular if.:

(2,B) E (R'ORI) \ (R'B) E (R'OKLEV)

So  $M_{0,\theta^{\dagger}}(v,w) \longrightarrow M_{0,0}$ is a symplectic resolution.

(When  $\lambda=0$ ), the Weyl group  $W(=S_n)$  acts on  $\theta'_5$ .

Let  $M_{0,\theta_1} \subseteq M_{0,\theta_2}$  if  $\Theta_1,\theta_2$  in the serve chamber.

So, when we were in • (type  $A_1$ )

there were 2 chambers  $\theta^{\dagger}=1$ ,  $\theta^{\dagger}=-1$ in • — • type  $A_1$ there are  $(H_1)!$  chambers

There is a  $C^*$  action on the cotangent direction:  $t \cdot (x,y,i,j) = (x,ty,i,tj)$   $l the map <math>M_{o,6} \rightarrow M_{o,o}$  is  $C^* - equivarient.$ The point is that  $T^*(M_{o,o})$  is a lagrangion subvariety.

and in the case when Q how no oriented cycles,  $m_{o,o} = |o|$ . So  $\mathcal{T}^{-1}(o)$  is a Lagrangian in the guiver case.

BM homology

There isht a notion of fundametal class for non-conpact non-italds in usual homology theory, but there is for BM homology.

 $M_1 \times M_2 \times M_3$   $\begin{cases} P_{i,j} \\ M_1 \times M_2 \end{cases}$ 

 $\frac{2}{3}$ ,  $\frac{2}{3}$  =  $\frac{1}{3}$   $\frac$ 

Zij

\*:  $H_{1}(Z_{12}) \times H_{1}(Z_{23}) \longrightarrow H_{1+1}-\dim M_{2}(Z_{12} \circ Z_{23})$ 

 $C_{12}$   $C_{13}$   $\longrightarrow$   $P_{13}$   $\left(\left(C_{12} \boxtimes \left[M_3\right]\right) \cap \left(C_{13} \boxtimes M_1\right)\right)$ 

Now set  $M_i = M$ ,  $L \ge -M \times_Y M$  for  $\pi_i: M \to_Y$  proper. This forms on adjution  $H_{\bullet}(2)$ 

pick  $y \in Y$ ,  $M_y = \pi^{-1}(y)$ Set  $M_1 = M_2 = M$ ,  $M_3 = pt$   $Z_{12} = Z_3$ ,  $Z_{23} = M_y$ ,  $Z_{12} \circ Z_{23} = M_y$  $\longrightarrow$   $H.(z) \hookrightarrow H.(M_y)$ 

Now back to the quiver case let m(w) = [ mo, o+ (v, w)  $m_o(w) = \bigcup_{v \in V} m_{o,o}(v,w)$  $Z(w) = \bigcup_{V,V'} M_{0,\theta^{\dagger}}(V,w) \times M_{0,0}(V+V',w) M_{0,\theta^{\dagger}}(V',w)$ (in other words,  $2(w) = M(w) \times M(w)$ ) Let Hw = Htop (2(w)) Let  $\pi'_{v,w}(o)$ , be the Lagrangian  $\mathcal{M}_{o,ol}(v,w)$  $L_{w} = H_{top} \left( \bigcup_{v} \mathcal{R}_{v,w}^{T}(o) \right)$ Using top as there is a shift in (1), and semisual property makes sure we stay in top deg. And Lagragian also has the right (I think) ~ Hw CLw

Theorem [Na]: There is an algebra map  $f: U(g_a) \longrightarrow H_w$ and Lw is a simple integrable ge-module with highest weight  $\Xi$  w; W; (W; fordametal neight) When Q is type A, this was first discovered by Ginzburg, Lagrangam construction of the evoloping algebra U(sh) Define  $B_k^{(r)}(v, w) = \{(v', v') | V'' \in \text{Rep}(\bar{Q}, v+re_k, w),$ V'CV" subjep st.  $I_{\mathsf{m}}(i_{\mathsf{k}}: \mathcal{W}_{\mathsf{k}} \rightarrow \mathcal{V}_{\mathsf{k}}') \subset \mathcal{V}_{\mathsf{k}}')$ Bu (U, W) is a streducible empired in 2 (V, V+rex, W) Define  $E_{k}^{(r)} = \sum_{i} [B_{k}^{(r)}(v, w)]$ let  $\triangle(v, w)$  be the diagnal in  $M(v, w) \times M_{0,6}(v, w)$ Then  $E_k [\Delta(v, w)] = [\Delta(v-e^k, w)] E_k$ Appearably this is easy to check.

$$C^{*} = T^{*}S^{'} \longleftrightarrow C^{*}$$

$$Z = e^{r+i\theta}$$

$$W = dr \wedge d\theta$$



$$W(T^*S') \cong D^*Gh(C^*)$$

$$LCTS' \qquad \mathcal{O}_{C^*}$$

$$CW(L,L) \simeq Ext(\mathcal{O}_{C^*}, \mathcal{O}_{C^*})$$

$$C[z,z^1] |z|=0$$



$$H: T^*S' \longrightarrow \mathbb{R}$$

$$2 \longrightarrow \underline{r}^2$$

$$(2 = e^{r+i\theta})$$

$$CW(L,L):=\bigoplus_{x\in\phi'_{H}(L)}C\cdot x$$



$$\int_{C} \int_{C} \int_{C}$$





$$\mathsf{D}^{\mathsf{b}}\left(\begin{array}{c}\widehat{\zeta'_{2_{1}}}\end{array}\right)\cong \mathsf{D}^{\mathsf{b}}\left(\begin{bmatrix}\widehat{\zeta'_{2_{1}}}\end{bmatrix}\right)$$



SiaoChi Moki

Arep is denoted jilin zy zy zy conk

Conk

Conk

Sep(Qo, v, w) (z,y,i(j). Have moment map M: T\*Rep(Q, v, w) -> of, given by (zy, vij) +> [z,y] tij = \sum\_{aeA} xaya - yaxa trij \cop\_{V=}(f) g\_{V\_1} \line(G+L(V\_1)) King's stability conditions > (Ginzburg Prop 5.1.5) (x,y,i,j) EM (O) is D-semistable iff For any collection of subspaces  $S = (Si)_{i \in I} \subseteq V = (Vi)$ Stable under X : Y, have We dain that this is equiv to  $S_1 \subseteq Kerj \implies S_1 = 0$  this I. equiv to  $J_1, J_0 \times I_1 = 0$  injective 4 0525K

Let 
$$m(x,y,i,j) = 0 \in g_v$$

So  $\sum x_i \circ y_i - \sum y_i \circ x_i + i_0$ 
 $\Rightarrow -y_i \circ x_i + x_i \circ y_i - y_i \circ x_i +$ 

So Stiogi - Zyioni + ioj = 0 = gv => - y, 0 21 + 21, 0 y, - 2/2 - 22 + ... + 2/2-10/4 = - voj

(2) = y,024=ioj, x,0y,=y,02,,...,x,=104k-1=yk-102k-1, x,04k-1-0.

Claim: If kerjoth, o...oy; \$0 for some i, then 3 non-200 (Si) stable under 21, y, Sickerj,

=> (x,y,ij) not 0 cemistable.

Pf 10y, o ... o y: \$0 > kerj\$0.

Take Sizkerj 70 Want Si & Sz & Sz & ... = Sk Note that you = roj => kerj < kery, on

(S) =0.

Take  $S_2 = \chi_1(S_1)$ ,  $S_3 = \chi_1(S_2)$  etc. Then  $\chi_1(S_1) = S_2$ ,  $y_1(S_2) = y_1(\chi_1(S_1)) = 0 \subseteq S_1$ . Also  $\chi_2(S_2) = S_3$ ,  $y_2(S_3) = y_2(\chi_2(S_2)) = \chi_1(y_1(S_2)) = 0 \subseteq S_2$ ... etc So  $(S_i)$  Stable under  $\chi_1, \chi_2, S_1 = \ker_1$ and so  $(\chi_1, \chi_1, i_1) \in \mu^{-1}(0)$  not semistable. Therefore,  $(\chi_1, i_1) \in \mu^{-1}(0)$  0 of  $S_1 = \inf_1 S_2 = \inf_2 S_1 = \inf_1 S_2 = \inf_$ 

Vz=imjoy,

Vz=imjoy,

Vk=injoy,

Vk=injoy,

(Also note that 0+ss iff 0+-s)

Vi = imij

(8) € 1 v, = 24, 24 | v2 = 22 etc. Ga (n. y, ii) by (g; oxjegi, gj-coxjegi) , gj-coxjegi) , gci, jogi) } linear algebra

5. M'(0) SS/= } (V1,..., Vk, v, n, -, nk-1) | ilv=n, nlv=n en]

 $= \{ (V_1, ..., V_k, i) \mid i(V_k) \subseteq V_{i+1} \} =: N$ 

Ef flag variety.

by "orbit-stabiliser" (since the action GL(r,C) 20 is transitive) Now, f = GL(r,C)/P(y) ( $y = (n_1,...,n_k)$ )

Where P(y) is the stabiliser of the standard tag

 $P(Y) = \{A \in GL(Cr,C) \mid A(Vi) \leq Vi \}$   $V_i = \langle e_i, ..., e_{ni} \rangle$  standard flog.

Claim: Tr (G/P) = of/Adr.p. (Note: Gracks on P by right mult.)

Pf: Let X=G/P(n:G-)G/P) p= Lielp)
TeG=0J -> TnG -> TnG/P a

3 -> (nG) -> (nGP) adjoint action:

3 -> Rxx(3) -> TCx Rxx(3)

9.5 - Cgx(5) Adn. P = (Ln), (Rx), P coadjoint:

(g. )() = 2(Adg-()) →> 71\* (Rx)\* Adn P

= (T. Ru. Lu. Rn.) (P) = DR(T. Ru. Lu. Rn.) (DR(Exptp)) x.p

= Del nokin = Del t (>> xP) const. alternatively: =On Tru(GIP) (since PIS regarded as a point on G/P)

So have a map of/Adx.p -> Tre(Gr/p).

Moreover: Ty Rux(3)=0 => T. Ru(expt3) = const for all small t.

=> (exples) x P= xP > x-lexp(t) nEP => Adx-1(3) EP.

Tax = g/Adn.p

$$\frac{\text{Pf}:}{\text{Tr} X} = \frac{\text{Hom } (\text{J/Adn.p.} C)}{\text{Adn.p.}}$$

 $\frac{\lambda: 0}{\text{Adn} \cdot p} \longrightarrow \mathbb{C}$ rust Entity  $\lambda (\text{Adn} \cdot p) = 0 \text{ (viewed as } \lambda: 0, 0)$ 

-. T\* X = { > E Adn. pt}

 $\Leftrightarrow (Adt_{\cdot} \cdot \lambda)(p) = 0 \qquad (p! = \{ x \in g^{*} | \lambda|_{p} = 0 \}$   $\Leftrightarrow \lambda \in Adt_{\cdot} p^{\perp}$ 

> TX = 3(x, x) | xex, he Adr. pl 3

Recall:  $\vec{N} := \{ (y_1, ..., y_k, i) | i(y_i) \subseteq V_{i+1} \} = n^{-1}(0)^{s_i}/_{G_i}$ .

Claim: (cf. Kirillov p. 181)We have an isomorphism  $N = T^*J$ .

Pf: F=(Vi) flag, F=GL(m,C)/P(y)

> { beg | tr(ba) = 0 tas.t. a Vi = Vi }

We dain that this condition is equiv to bVi = Vi+1

= { be of | tr(bgag-1) = 0 tastaticEi ? May.

(Miti & Vi)

(=): If byi Svin then YastaViSVi, if we choose a compatible basis for F=(Vi),

then b = ( | D | D | Choose basis Vir. ..., Virsit Vir. ..., Virsit Vir. ..., Vir. of Vk,

 $b\alpha = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$  so tr(ba) = 0.

(=):If tas.t. a Vi & Vi, troba)=0, then:

a=(A) Suppose a=(A)

O A)



Note that we can take a to be s-t. one of the As is an elementary matrix and the rest of A 2000.

Then trcba) = 0 for all such a implies that  $A_1 = \dots = A_n = 0$ , and  $b \forall i \subseteq V_{i+1}$ .

$$q \cdot (E_i) = V_i$$
)

The first proposition of the second proposition o

=> T+F= \{(Vi), i) | iVi = Vi+1]