Category	2	Categorification
- A A	•	

Plan: Categories & Functors
· Adjoints
· Group actions on Categories · (a togorifications
· (a togorifications
· Examples,
In Statistics applied mostles, quantities are concerned (i.e. find the probability or prove an equation holds)
probability or prove an equation holds)
In pure mathematics, Structures are more eften ancorned, (i.e., finding
tuo Structures are related or the Same)
In pure mathematics, Structures are more eften converned, (i.e., finding two Structures are related or the Same). And cortegory theory is the formal way of carrying this out.
In short, pure mathematicians aften works (at least) 1 Categorical level higher than applied mathematicians.
night than appart mathematicals.
What is a contegory;
Def^: A category & consists of: Objects: 0 & C
1. () () () () () () () () () (
· morphisms/arrows: given C.C. objects in C, fe Hone (C, C2)
1011 (201)
Such that merphisms can compose: fe Hamla, a), 96 Hamla, 60)
7 gof 6 Han (C, , C3)

- Field = Category of fields.

(This category Field is a bit stronge, as the only

Possible field maps are injections, i.e. field extensions)

More on Categories:

• IK- Category: Hom-sets are IK-verter species.

Example: Vertix

Non-Example: Grp

- (pie) Additive - Cortegory: Given A, BEC, possible to define ABB also f g E Hom (A, B), possible to define fog Example: Mode Via uni property)
also f 9 & Hom (A, B) possible to define fog
Example: Mode (Via uni property)
Marie Designer real, King
· (pre-) Abelian - Catogory: Additive, Lgiven A = B, possible to define ker Example: Mode
Example: Mode, & Coker
Non-Example: Ring, Field (has to send 1 to 1)
Example: Shv _x Non-Example: VeceBun _x (finite rank) 0 -> O(-1) -> O(-2) -> sky scropper -> 0
0 -> O(-1) -> O(-> sky scropper -> 0
(Side note on Vect Bunx, by Serre-Swan theorem, Vector bundles consespond to f.g projective mediales over OCX), ker/coper (P, -> P2)
correspond to fig projective medules over O(x), ker/coker (P, -> P2)
doesn't have to be pooj again)
· Maroidal category: A category where 'tensor product' is possible.
· D-Enriched Catogory: Each Hom(C., Cz) is an object
Francis IK-Pategorius one exerth Vectur-Entired Cortegories
Con a Allian Gea i am exacela Al real
Example: K-Categories are exactly Vector-Enriced Cortegories. (pre-) Additive Categories are exactly Ab-Enriched (ategories
· 2- Category: ? (Enriched over Cat) ix morphisms are categories
it murphisms are contegories

Function :
Functors are maps between Cortegories
F: C - D is an assighment
FOO YXER and FIF) Y f & Ham (x, y)
st. F(e) = e
$F(x-y) = F(x) \circ F(y)$
Example: Forgetful functor, Homology, To, (Not HH*)
Cat - Cotegory of all (small) Categories
norphisms are functors.
Natural Transformations:
are maps between functors: $F, h: C \rightarrow D$
n: F→ G is an assignment
$I_{x}:F(x)\longrightarrow G(x)$ 4.
F(x) Tx G(X)
Fefy = JG(Y)
$F(Y) \xrightarrow{l_Y} h(Y)$
FCD m(D
(Think about a mp between grp representations)
· Func (C, D) is a category:
each object is a functor
Func (C, D) is a category: each object is a functor morphisms are natural transformations,
Thus we see Cat is a 2-Category: each hom set
V \

is also a category. The norphisms of the how sets are called z-norphions. It is possible to define maps between natural transformations and 3-categories.
It is possible to define maps between natoural transformations and 3-Categories.
Arether important example:
Mor : Objects are Mody, 4 a try
(Morita) (1-) morphisms are given by bimodales a MB
$M_0 d_A \rightarrow M_0 d_B : - \mathcal{O}_A M_B$
Arethor important example: Mor : Objects are Mody, A a ring (Morita) (1-) Morphisms are given by bimodales AMB Mody - ModB: - Of MB 2-morphisms are isomphisms (or homomorphisms) of bimodales
We will think about Mor a loc in this reading seninar (prebably)
Adjoints: (F,G) between L&D
C ~ D
are adjoints if $Ham_{\infty}(FM, N) \cong Ham_{\infty}(M, GN)$
are adjoints if $Hom_{\mathcal{O}}(FM, N) \cong Hom_{\mathcal{O}}(M, GN)$ is a isomorphism functorial in both arguments.
Example: Tensor-Hon adjunction
CAll adjunctions I can think of are numer less of this form)
Hom (YBX, Z) = Hom (Y, Hom(x, Z))
by product is Ind - Res adjunction.
Relation to homological algebra:

right adjoints are always left exact
left adjoints are always right exact.
Therefore @ is tight exout R Hom is left exact.
F is left exact if F perserve limits by is right exact if G In particular perserve kernals. I.e., perserve eclinits if $0 \rightarrow M_1 \rightarrow M_2 \rightarrow M_3 \rightarrow 0$ is chart
then $0 \rightarrow \hat{f}(M_1) \rightarrow \hat{f}(M_2) \rightarrow \hat{f}(M_3)$ is every $\text{Exact} = \text{left} + \text{right} = \text{exact}$
Group actions on Catoppies:
Groupoid: a category s.t. Hellow (x, y),]! ft Ellanly, x) S.t. foft= ey (i.e. all morphisms are inertible)
Then Han (x, x) is notwally a group A groupoid is 'a group with nonlitiple abjects'.
A groupoid is 'a group with multiple objects'.
Example of groupoid: TI(X), abjects: points
mers; peoples / homotopy
$\pi_{\cdot}(x,x) = \text{Hom}_{\pi_{\cdot}(x)}(x,x)$

Ruk: One could instand form a 2-Cost where 2-morphisms are herotoples.
Group actions on Categories.
Naively: GCC is
Fig): L-> L a fultor & 9 & h
4. F(9h) = F(9s · F(h))
But this is too Strict: typically we won't get equality
herefold principe: = ~ ?
functions thouselves live in a Category, so we instead ask for: $\eta_{g,h}: F(g)F(h) \cong F(gh)$
a natural isomophism.
and Fig) Filh File idray Plak > Fig) Filh k)
Co,h idf(k)
F(gh)F(k) $P(gh,k)$ are equal.
The naive action is the same as G -> Aut (C) map of groups Where Aut (C) is the group of automorphisms of C
Where Aut (C) is the group of automorphisms of C.
The actual action is the same as G -> Aut(C), a monoid
functor, where G is viewed as a monoidal category with objects elements of
6, & = group low, arrows are identities, Aut(C) Viewedusa Mondidal (a-
With & = Composition, arrows are natural isomorphisms,

One can Also view 6 as a 2- Cot, with a signal object, amous - group except
arrow composition = Group law, 2- norphitms = identity. View Aut (2) as a 2- Cat
as well, then the action is the same as a 2-functor from h to
Aut (C)
The procedure of going from monoidal contegories to 2-categories is alled
The procedure of going from monoidal contegories to 2-categories is called deleping. One can see 2-categories as monoidal categories with multiple objects!
Categorification is the process of replacing set-theoritic theorems
With Category - theoretic analogues.
Categorification is the process of replacing set—theoritic therens With Category—theoretic analogues replaces sets with categories functors equations Natural is omorphisms
functions functions
equations Natural is omorphisms
The opposite direction is called decalegalification,
These are not precise procedures, and there can be many ways
6f (de) cortegorifing
these are not precise procedures, and there can be many mays of (de) cortesprifing Very often, Categorification provides more structures and further insights into the problem.
Infant example: fin Vect K Categorific IV. Ik' Ik'BK IK'BK IK' IK'BK IK'
Infant example: fin Vect & Categorifies IV
K, KBK, KBK,
N+M n×M
De cartegorification is by taking dim/iso classes Grothendieck groups.

One sees that n+m=m+n ~> 1k@1km2 km@1kn
nm = mn -> 1k10 1kn = 1Km0 1kn
In a similar way, Graded Verex categorifies phynomials
Knot Thony:
Knot Theory: Khopanar honology Heegaard Floer knot homology (ategorities Cortegorities Jone ply nominals Alexander polynomials
Contegrifies Contegrifies
Jone phynomials Alexander phynomials
V
A knot is i: S' -> R /53
A link is a projection of incap of into ID
ie. S' -> IR3 ->> IR2
A know can give many link diagrams they are related
by Skein relations (Reidencisier moves)
ie. S' -> IR -> S R S R
knot invariants (i.e. that k, = k2 => P(k1) = P(k2))
Kholland handogy of k is a graded vector space st. its Enler
kholonology of k is a graded vector space st. its Enler characteristic (Z(4) dim Vi) is Jone poly
Knovana homology detects the unknot, it is not know if
Khovanov homology detects the unknot, it is not know if jone poly doos.

In Wei's talk, categorification of repo of Sl2 helped to Construct a derived equivalence of: D'(T'Gr(n, k)) - D'(T'Gr(n, n-k)) biven an (Artinian) abelian Catagory C, we can define it Grothendieck group ko(C): It is an abelian group generated by [c] where CEOL(C), with relations is 0 -> C, is a SES, then [C2] = [G] + [C2] Example: C = Abelian groups, than [3/2] = 0 6 ko(C) as 0-2 -> 2 -> 1/2 -> 0 One con similarly define $k_0(F)$, F a functor, Ko is a popular way of decategorification, In Weis talk, K(F) was used to construct the agriculence Very Similarly, Chuang & Rouguior used a very similar categorification method to solve the abelian defen group conjecture for symmetric

As we said, A-mod Categrifies However, Smetimes he don't goin extra info. For example, if A = CG, then CG-med = GH-mad it ko (aG) = ko (CH) (This is a restortenent of Main Thorum of Character Touble) But is it possible to recover h or Ch from Ch-mod/h-rep or ko(Ch) The answer is Yes, and this is the context of Tanaka Duality Cone from of It) Let F: Ch-mod → Vect be the forgetful functor, then Aut (F) ~ 6 One can also view 'Richann-Hilbert correspondence' TI(X)-rep - LOC(X) an instance of Tanaka duality