D - module	
· D stands for differential operators.	
· Motivation from PDEs.	
· D-modules form a bridge	
Representation theory Part I D-mod Part I (of Lie gps/Lie algs)	Algebrail geometry (local systems)
· Part 0: Intro & motivation	V
· Part I: Riemann - Hilbert Correspondences (geometric/topologi	ical/Rep theoletic interp of D-mod
· Part II: Beilinsen - Bernstein Localisation (Connections SS Lie	to Rep theory of alg/ap
· fort 11: Kazhdan - Lusztig Conjecture. (Using geomorre	to do rep there
· Port IV: D-mods on singular spaces. Notes only	
Port 0:	
Field: we work over (X, algebraic variety)	sneoth
First consider over C^ (or A^)	
Consider linear partial differential operators:	

	$\frac{2}{2}$ $\left(\frac{1}{2}X_{i}\right)^{2}$	$\left(\frac{\partial x^{\nu}}{\partial x^{\nu}}\right)^{\nu}$
ίι	/(}- v.	fine in G [[x,, x,] = 0
Sach element	form an algebra (not	Commutative), Dimethed (0)
1	is characteristed as	
· \frac{9x'}{9} \times' =	2, dx; +1 ie. [ai, x] >1	$\left(\frac{\partial}{\partial x}(xg) = g + \lambda \frac{\partial}{\partial x}(g)\right)$
· [xi, xj]	•	leibniz rule
٠ [المحار ،		
$\cdot \left[\frac{9x^{1}}{7}\right] \times$	5	
		algebra Mon n-voiable
	de is a mediale/rep	
~ ,	$\mathcal{A}_{1} = \mathcal{N}_{1} = \mathcal{C}(x, \beta) = \sqrt{3x - x\beta^{2}}$	
		or Short, Consisting of
,	I glueing	<u> </u>
<i>(</i> '	· •	. What to find the solutions
	e can do this using	•
•	ion associate P a	
	^	?

Pp: = Dp (left module) (not every D-mod is
Then Homp (Mp. 0) = Homp (Vop. 0)
$= \{ \varphi \in Hom_{\mathcal{O}}(D, O) \mid \varphi(P) = 0 \}$
$(H_{\sim}(A,B) \approx B)$ $\simeq \{f \in O \mid Pf = O \mid$
PR functor is used more (were on this later) general a local bystom)
The above Construction can be extended to a system of PDES.
Sidenote on Cortegories & functors;
(ategory: a 'set' of things (abjects) L. maps between them(marphisms) eg. C[G] - mod = G reps Affk "affine alg varieties" (=" (onm k-dg of
functor: natural functions between cortegories.
functor: Natural functions between Categories. Send objects to objects marphisms to marphisms (Compatible) (Compatible)
eg. Res, Ind are functions, also pullback of vector bundles. (topes (cumuting diagrams)
Derived Category: Suppose we have

 $0 \longrightarrow M_1 \longrightarrow M_2 \longrightarrow 0$ then $O \longrightarrow So((M_3) \longrightarrow So((M_1) \longrightarrow Ext(M_3, O))$ Not surjective. Fix: use derived Category and derived functors, the can extend on the right. Objects: consider of complexes of objects morphism: maps of complexes with quasi-isomorphisms inverted. Don't worry too much about this, I will only use derived category to State theorems. End of Puri O Part I: Riemann Hilbert We also wont the solution to be finite dimensional. this leads to a subcategory called holonomic D-modules (I won't define them) To study a space X, it is natural to study the category of Vector bundle/local system/coherent sheaves on X. This is like saying to study R, it is natural to

Study R-mod.
A local system L on X is a locally constant C-linear
Sheaf: Basically, on every chart we attach a copy of C?
and they glue nicely. The end result can be non-trivial.
E.g. Thinking of a Mobius band (rank 1 l.s)
$a^* = x$
If X is connected the local system is equivalent to
tepsentations of TL(X) (by monodromy: acrosign [r] & Th. (x) the operat
For example: Mobius band $\longrightarrow \pi_i(C^*) \cong \mathbb{Z} \longrightarrow GL_i(C)$
n 1→ e ^{in T.}
Therefore we have:
(cal systems) The a loop" The a loop" The a loop" The construction" The construction of the constructi
Riemann Hilbert \\S \times \times \\\ \\ \times \\\ \times \\ \times \\\ \\ \times \\\ \\ \times \\\ \ti
this picture; { holomaic D-med } with regular Gingularity
(This picture is technically urong)

More precisely: D-mode = hal D-mode = hal regular singularity ~ Perverse shades flat connections \geq flat coun, rs \approx Local systems Example: Day == ezaix ~> 5' (ogy == monochong ** Ad-A

• a [5], not a local system, yet a perveyore sheaf,

A hol, r.s. (C[5] = DAY

- hundred - D-mod.

Supported at 0, More Generally;

bounded D mad

Dr.h. (Dx - mod) ~ Dc (X) Derived regular Dual of Sol Constructible. Important question: What is regular? Let $U = C \setminus \{0\}$ E.g. $M = \frac{Du}{Du} (kd-1)$, attempt to $Sol(M) = \{\lambda e^{\frac{1}{2}} | \lambda \in \mathcal{L} \}$ But $M_{\Xi} = D_{U} \int_{D_{U}} \int_{D_{$ The Def of regular stop exactly this from happening. M, not regular M2 is Back to RH (18) Moreover, the equivalence preserve Important functions on both sides. This is known as the Six functor formalism.

they are		(+1:1
••	(push forward)	(think about Ind)
t*	(pullback)	(" Re5)
f:	Leaceptiant Pf)	I am not going to define them.
! !	(Pb)	but some properties: take $P: X \longrightarrow Pt$
· D	(dual)	H'fx (Cx) = H'dR (x, C) for x smooth
Hom	· ,	Hit: (4x) = HBM (x, 4) = HBR (x, 4)
Mve	precisely it	is saying that the RH (\$)
		the D-mod theritic of fx
		the local-system theoritic of the perations
Therefore	to study the	e KIT is sunctorial with these operations. Sometry of X is the same as
<u> </u>		e KIN is the same as studying D-mad on X
End of		

G reductive ap (s/2)	(): Coniverse event
G reductive gp 'SLn') B Borel (7) [See exop	U; universel evenly settion Later)
This is complicated, we will only define good example.	
good example.	
reductive gp: like 5Ln.	
Borel subgp: like \tag	11 . To1/
Ug : like C[6], holds reps of o	Joj := Toj (xy-yx-[xy])
g: lie algebra of 6 (Tangari space reps of of a	of G at e,
(Voj) - wood: the raps where the centre acts be	e coredy related to leps of
Example: G = SL ₂ (a), B = upper triangular.	
6/8 = CIP' (6/8 is in ge	nard a flag variety)
] = 5/2 = C <e.h,f></e.h,f>	e=(0 1)
Traceless [h,e] = 2e	h = (1 6)
matrices $[h, f] = -lf$ $[e, f] = h$	$f = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$
Z(Uslz) = C[c] whore C is	
C= - 1/2+e.	l+le
So by (Usls) - mod, we mean an s	•

such that a aces by o.
Recall: All finite-dim reps of Slz are given by highest weight
Recall: All finite-dim reps of S_{12} are given by highest weight. i.e. $\exists V \subseteq V$, $S_{1.}$ $e \cdot V = O$ $h \cdot V = \lambda(h) \cdot V$ for some $\lambda \in h^*$
(all them LLA).
These generalize to infinite—dim reps call Verna—modules Mix

How is $\frac{de}{b}$ related to $\frac{p}{b}$, this is really just orbit - stabliser: $\frac{de}{de} = \frac{p}{de} = \frac{p}{de}$

- - 0

She acts on
$$\beta$$
 Via multiplication

(a b) $(x, y) = \frac{az+b}{cz+d}$

for $z = \frac{x}{y}$ (Mobilis fromsform)

Since IP is not affine, to get algebra & modules, we need to take global section:

We illustrate use example: Tx, X=6/8

two durits $U_1 = \text{Spec}(\underline{C}[\underline{z}])$ $U_2 = \text{Spec}(\underline{C}[\underline{w}])$

on U, Tu, = <2, 52>

on $U_1 \cap U_2$, we have relation $W = 2^{-1}$

Unlle: spec([[2,2]]

u

Tunuz = < 2, 2, /27

Example: 5-module at 0. (L) (this is more naturally a right D-module) action is given by faurior transform than multiply: $\frac{1}{3^{2}} \cdot \frac{1}{3^{2}} \cdot \frac{1}{3^{2}} = -\frac{1}{3^{2}}$ in the multiply: $\frac{1}{3^{2}} \cdot \frac{1}{3^{2}} \cdot \frac{1}{3^{2}} = -\frac{1}{3^{2}}$ $(-22)^{i+1} = -22)^{i+1} = +2(i+1)^{i}$ $\frac{2^2 \int_{11}^{1} \partial^{i} = 2^2 \partial^{i+1} = -2 (i+1) \partial^{i}$ = +i (i+1) } i-1 Therefore This form a rep of lower weight 2. With lowese weight verter " 1 = 2° 1) The dual of this rep is M2. Verma medule of height weight -2. End of Part I