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Abstract

We present the basics of the theory of modular representation theory of finite groups, mainly
from a character theoretic point of view. We begin by exposing the relevant aspect of the
theory of non-commutative algebra, then specialise to group algebras. Then, we use the
results that we have built to relate modular representations with ordinary representations
using the so called CDE triangle. We continue by analysing more properties of the CDE
triangle, and by tensoring with a certain field K, we move the CDE triangle to the character
theoretic level. We finish by providing some examples of modular character tables and prove
a generalised version of Burnside’s Theorem.
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Introduction

The aim of this project is to introduce and study modular representation theory of finite
groups, mainly from a character theoretic point of view. We assume some knowledge of com-
mutative algebras and representations over C. We will also assume some basic understanding
of p-adic numbers.

In the first chapter, we develop enough module theoretic results so that we can use them
in the following chapters. We firstly talk about what is special about representations over
C. It turns out the correct notion to use is called semisimplicity. We then define a measure
of the failure to be semisimple, called the radical. We prove the generalised Maschke’s
Theorem, which tells us a necessary and sufficient condition on when the group algebra
is semisimple. Then we prove the Brauer-Nebsitt’s Theorem, which relates the number of
irreducible representations with the number of p-regular conjugacy classes. Finally we prove
the self-injectivity theorem for group algebras, and we use its corollaries in the following
chapters.

In the second chapter, we start by introducing how to relate modular representations with
regular representations. The tool we will use is called a (0,p)-ring for k. It is basically
the ring of integers of some extension of Q,. Then there will be a mod map from ordinary
representations to modular representations. By considering projectives, we can make this
into a triangle and this is the so called CDE triangle. We will deal with the technical
details of the triangle and show it is commutative. Due to the symmetry of the triangle,
we will show two of the maps are ‘dual’ to each other. We continue by using the Brauer’s
Induction Theorems to show injectivity and surjectivity of the maps. We finish this chapter
by tensoring the entire triangle with K, and hence obtain the triangle on the character
theoretic level. We explicitly construct the vertices of the triangle to ease the abstraction,
and use the injectivity and surjectivity of the maps to show what we constructed is the same
as the tensored triangle. Finally we introduce orthogonality and p-defect then compute
examples using the ‘dual’ maps and results from the previous chapter.

In the final chapter, we relate characters to blocks. We can show this is well-defined by
using an equivalent notion of belonging to a block. By invoking ideas from central character
theory and a stronger notion of orthogonality on blocks we prove a generalised version of
Burnside’s Theorem.

We mostly follow [Alp86], [Ser77], [Sch13] and [Fenl5]. The most original parts of the report
are the two proofs from Section 2.5.1 and examples from Section 2.5.2.



Some applications of representation theory over R and C can be found in physics, as it is
very useful in quantum mechanics and particle physics. However, this application tends
to go away in the positive characteristic case. Nonetheless, it is useful in other areas of
mathematics.

Unsurprisingly, as we will see in the generalised Burnside’s Theorem, modular representation
theory was used in the classification of the finite simple groups. The proof of the Brauer-
Suzuki Theorem [BS59] depends on the relationship between the ordinary and modular
characters using the CDE triangle. Its generalisation, the Z* Theorem [Gla66], another
important result in finite simple groups, also depends on calculations on modular characters.

Results from modular representation theory also appear in geometry. For example, the
Adams conjecture is about real vector bundles over CW complexes. But its proof in [Qui71]
involves modular representation theory of the finite groups GL,(F,) and O,,(F,). There are
also uses of modular representation theory in number theory, for example in [Ser77, Ch. 19].

I would like to thank, in no particular order, the people who helped me along the way. I
would like to thank my friends Thibault Décoppet, Bradley Doyle and Wen Cong (Isla)
Lim for their help and feedback. I thank flatmates Adam Davies and Thomas Willers for
their motivational support. I also thank Adrian Wong, Asad Chaudhary and Jeremy Wu
for proof-reading. I would also like to thank my personal tutor Dr. John Britnell for his
genuine help and support throughout the four years. Finally, I would like to thank my M4R
supervisor Prof. Alexander Ivanov for providing leadership and guidance in my project.

Plagiarism Declaration: This is my own unaided work unless stated otherwise.



Chapter 1

Module Theoretic Approach

In this chapter, we will mainly follow chapters 1 and 2 in [Alp86], and sometimes we will
switch to [Ben98a] for more high-tech machinery. We provide some basic definitions and
properties, and will sometimes only sketch the proofs and leave others as facts. Throughout,
all modules will be finitely generated (f.g.) and all groups will be finite. We sometimes drop
the word left /right for modules if it doesn’t cause confusion and the property holds in both
cases. And if the ring is obvious, we just say ‘a module’ without mentioning the specific
ring.

1.1 Basic Definitions

Definition 1.1.1. The group algebra of a finite group G over a field k is defined as k[G] =
{2 ,cc a99: ag € k}, with multiplication generated by g - h = gh.

Remark 1.1.2. Since G is finite, we see that k[G] is finite dimensional as a vector space
over k, therefore it is Artinian (both left and right) as a ring/algebra over k.

Definition 1.1.3. 1. A module is simple/irreducible if there are no submodules other
than the trivial module {0} or itself;

2. A module is indecomposable if it can not be written as a direct sum of proper submod-
ules.

We note that irreducible implies indecomposable.

Recall that if A is a ring, M is an A-module and N is an A-submodule of M. Then M is
Noetherian (Artinian) if and only if N and M /N are Noetherian (respectively Artinian). As
a corollary, any f.g. A-module is Noetherian (respectively Artinian), since it is the quotient
of af.g. free A-module A®", then do induction on n. We also recall the following proposition.

Proposition 1.1.4. For an A-module M the following conditions are equivalent:



1. The module M is both Noetherian and Artinian;

2. The module M has a composition series.

Combine with the next theorem, we see every f.g. module over an Artinian ring has a
composition series.

Theorem 1.1.5. Left (respectively right) Artinian implies left (respectively right) Noethe-
rian.

Remark 1.1.6. Since every f.g. module over our group algebra is a homomorphic image of
some free module, and that if M is simple, then any non-zero element of M is a generator,
so M is a homomorphic image of the k[G] module k[G]. And this implies that there are
only finitely many simple £[G] modules, up to isomorphism, as the k[G] module k|G| has a
composition series of finite length and any simple module is a composition factor.

Definition 1.1.7. A module M is semisimple if the following equivalent conditions hold:

1. M is a direct sum of simple modules;

2. Every submodule of M is a direct summand.

An algebra is called semisimple if it is semisimple as a module over itself.

Proposition 1.1.8. If A is semisimple as an algebra, then all modules over A are semisimple.

Proof. (<= ) This is obvious by definition.

(=) We know that a direct sum of semisimple modules is semisimple so any free A-module
is semisimple. But any (f.g.) module is a quotient of a free module, so we just need to show
quotients of semisimple modules are semisimple. Let ) be a quotient of the semisimple
module M, with quotient map m : M — (). Then kernm has a complement by semisimplicity
of M, which is isomorphic to () via m. So we need to show any submodule of a semisimple
module is semisimple. Let N C M be a submodule of a semisimple module. If U C N, then
we have M = U @& V by semisimplicity of M. Therefore, N 2 U & (V N N). O

Remark 1.1.9. We just proved that submodules and quotient modules of semisimple mod-
ules are semisimple.

One obvious goal is to decompose a group algebra into a direct sum of indecomposable
submodules. In order to do that, we will introduce the notion of projective modules.

Definition 1.1.10. An A module P is said to be projective if the following equivalent
conditions hold:

1. P is a direct summand of a free module;

2. If ¢ is a surjective homomorphism from N to P, then the kernel of ¢ is a direct
summand of N; (i.e., every surjection to P has a section)
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3. If ¢ is a surjective homomorphism from X to Y and % is a homomorphism from P to
Y, then 3 p: P — X such that ¢ o p = 1. (defining property)

The defining property can be captured into the following commutative diagram.

P

s

Xy

Similarly, we can define the dual notion of projectivity, the injective modules.

Definition 1.1.11. An A module [ is said to be injective if the following equivalent condi-
tions hold:

1. If ¢ is a injective homomorphism from I to N, then the image of ¢ is a direct summand
of N; (i.e., every injection from I has a retract)

2. If ¢ is a injective homomorphism from Y to X and % is a homomorphism from Y to
I, then 3 p: X — I such that ¢ o p = 1. (defining property)

1
p 7

X< vy

We will show later that for group algebras, a module is injective if and only if it is projective.

All omitted proofs can be found in [AM69] and [Lan02].

1.2 Radical and Socle

Not every algebra is semisimple. For example, Fy[Cs] is not, it has the trivial module as a
submodule, but there is no complement for it (see the next section for more discussion on
this). We want to measure how much an algebra fails to be semisimple.

Definition 1.2.1. We define the radical of A to be Rad(A) = {z | x-S = 0 for all simple
modules S}.

We note that if A is semisimple, then Rad(A) = 0. And it is a two-sided ideal of A.

Theorem 1.2.2. The following conditions are equivalent to Rad(A):

1. The largest nilpotent (two-sided) ideal of A;



2. The intersection of all maximal (left) submodules/ideals of A; (Jacobson radical)

3. The smallest submodule/ideal of A such that the corresponding quotient is semisimple
(i.e., the smallest submodule M such that Rad(A/M) = 0);

Proof. 1. If I, J are nilpotent ideals, then it is easy to check that (I +.J) is also nilpotent.
Thus there is a maximal two-sided nilpotent ideal, call it N. Firstly, Rad(A) C N.
Indeed, we have a composition series

OZAmCAm_1C"'CA2CA1:A.

Since A;/A;41 is simple, Rad(A) kills it, so Rad(A)A; C A;41, so Rad(A)™ = 0.
Conversely, if N ¢ Rad(A) then NS = § for some simple module S. But then N
cannot be nilpotent, because J*S =S = J¥ #£ 0, Vk.

2. Let J = (m; with m; being the maximal left ideals (so J is the Jacobson radical).
Note if S is simple, then S = A/m for some maximal ideal m. So

Rad(A) = (] Ann(S)

(where Ann(S) is the annihilator) and Ann(A/m) ={r € A|2A/m =0} ={x € A|
xA C m} is the largest two-sided ideal contained in m. Thus Rad(A) = [ Ann(A/m) C
(Nm = J. Conversely, let S be a simple module. We want to show JS = 0. Suppose
for a contradiction that JS = S, take a generator s € S so that Js =.5. Then js=s
for some j € J, so (1 — j)s = 0. But this is impossible since it is a unit by usual
characterization of the Jacobson radical.

3. We have shown that Rad(A4) = (), naxima ™ but recall in an Artinian ring, we only
have finitely many maximal ideals. so Rad(A) = m; N ---Nmy. Consider the homo-
morphism A/m; N---Nmy — A/m; & --- & A/my, it is easy to check this map is
injective and since the right hand is semisimple and we have shown any submodule of
a semisimple module is semisimple by Remark 1.1.9, this shows A/Rad(A) is semisim-
ple. On the other hand, suppose M is a submodule such that A/M is semisimple. So
say A/M = X;/M & ... Xy /M with X; submodules of A and X;/M is simple. Let
Y, = Z#i X, then A/Y; = X;/M. Since X;/M is simple, we see that Y; is maximal.
So we have Rad(A4) = (m; CNY; = M by (2).

]

Note that we have showed that the Jacobson radical is nilpotent. It is part of the proof of
Theorem 1.1.5.

Now we define the radical of a module.
Definition 1.2.3. If M is an A-module, then we define Rad(M) to be Rad(A)M.

Proposition 1.2.4. The following conditions are equivalent to Rad(M):



1. The smallest submodule of M with semisimple quotient;

2. The intersection of all maximal submodules of M.

Proof. 1. Note that Rad(A) kills M/Rad(A)M, so we can think it as an A/Rad(A)-
module. But A/Rad(A) is semisimple, and modules over semisimple algebras are
semisimple by Prop 1.1.8. So M/Rad(M) is semisimple and an A/Rad(A)-module
and therefore as an A-module. It remains to prove that if M/N is semisimple, then
Rad(M) C N, but this is trivial since Rad(A) kills M/N by the semisimplicity of
M/N.

2. The exact same proof of Theorem 1.2.2 (2) will go through.

O

Remark 1.2.5. Note that if M is any A-module, then M is semisimple if and only if
Rad(M) = 0.

Proof. 1f Rad(A)M = 0 then M is an A/Rad(A)-module, and A/Rad(A) is semisimple, so
M is semisimple by Remark 1.1.9. On the other hand, if M is semisimple, then M is a direct
sum of simple A-modules, which are killed by Rad(A). O

Note that for a module M, Rad(M) is also a module, we define Rad*(M) := Rad(Rad(M)) =
Rad(A)?M. And in general Rad" (M) := Rad(A)"M.

Definition 1.2.6. The above is call the radical series of M, it has finite length, since Rad(A)
is nilpotent by Theorem 1.2.2.

Now we discuss the dual notion of radical, the socle .

Definition 1.2.7. Let M be an A-module, then Soc(M) is defined to be the maximal
semisimple submodule of M.

Clearly M is semisimple if and only if Soc(M) = M.

Proposition 1.2.8. The following conditions are equivalent to Soc(M).
1. The sum of all simple submodules of M
2. The set S ={m € M | Rad(4A)m = 0}

Proof. The first statement is clearly equivalent to the definition of Soc(M). Rad(A) kills
any semisimple module, so Soc(M) C S. It is clear S is a submodule, and since it is killed
by Rad(A), it is semisimple, therefore it has to be the Soc(M), the biggest one. O



Note that M/Soc(M) is also a module, let Soc®>(M) be the preimage of Soc(M/Soc(M))
under the projection map M — M/Soc(M). Note that Rad(A)?Soc*(M) = 0, since
Rad(A)Soc?*(M) € Soc(M) and Rad(A)Soc(M) = 0. In fact, this characterizes Soc*(M),
since Rad?*(A)m = 0 means that Rad (M) kills Rad(M), so Rad(A) m C Soc(M) and there-
fore Rad(A) kills the coset of Soc(M) containing m and this means this coset is in Soc*(M).
Inductively, we define Soc"(M) to be the solution set to Rad"(A)m = 0.

Definition 1.2.9. The series above is called the socle series of M. Since Rad(A) is nilpotent,
it has to terminate with the last term being M.
Next, we prove an exercise in [Alp86, Exercise 3,4 P7]

Proposition 1.2.10. Let M be an A-module, then the radical length and socle length
coincide. We call it the Loewy length. Moreover, say the length is n, then we have that V
0 <i<n, Rad'(M)C Soc""(M).

Proof. This is clear by the equation of how we defined the Soc"(M). It remains to show
Rad'(M)C Soc"*(M), but this is also clear since Rad"™"(A)Rad'(M)=Rad"(A)M =0. O

For future use, we recall Nakayama’s lemma from commutative algebra.

Lemma 1.2.11. ! If L € M is a submodule of an A-module M such that M/L is finitely
generated, then L + Rad(M) = M implies that L = M.

1.3 Wedderburn and Krull-Schmidt

Next we want to establish some uniqueness statement of decomposition of a group algebra
into indecomposables. Let’s recall Wedderburn’s Theorem.

Theorem 1.3.1 (Wedderburn). If A is a semisimple ring, then A is a direct sum of matrix
algebras over division rings.

Corollary 1.3.2. If A is a semisimple algebra over an algebraically closed field k£ , then A
is a direct sum of matrix rings over k.

Remark 1.3.3. Note that End 4(;) is simple and is isomorphic as a direct sum of m simple
modules S;, where m is the rank of the matrix algebra.
We want to prove Krull-Schmidt Theorem, but firstly let’s borrow some terminology from

commutative algebra.

Definition 1.3.4. Let A be a k algebra. We say that A is local if A/Rad(A)= k.

'Even though we are in the non-commutative case most of the time, the Nakayama’s lemma still holds.
The proof is very similar in the commutative case, a full proof can be found on [Isa09, Theorem 13.11, p.
183]
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Proposition 1.3.5. A is local if and only if every element is either invertible or nilpotent.

Proof. Suppose A is local, we have proved that Rad(A) is the largest two-sided nilpotent
ideal of A, so if = is not nilpotent then x not be in Rad(A). Since the quotient by Rad(A)
is k, we write x = a 4+ b, where a € k and b € Rad(A). Consider the element

a'(1—ab+a?b*—...),

as b is nilpotent, this element makes sense, and it is easy to check that it is the inverse of x.

Now suppose the converse it true. We know A/Rad(A) is semisimple, and therefore by
Wedderburn, is isomorphic to a direct sum of matrix algebras. If it consists of more than
one matrix algebra, then (1,0,...,0) is neither invertible nor nilpotent. So A/Rad(A) =
Mat,, (k). But if n > 1, then take the matrix (1, 1)-th entry to be 1 and 0 for the rest entries,
this element is neither nilpotent nor invertible, so we conclude that n = 1, which is what we

want. OJ

Proposition 1.3.6. Assume A is an algebra over an algebraically closed field k, then M is
an indecomposable A-module if and only if End4 (M) is local.

Proof. It M = M; & Ms, then consider the projection to one of them. It is an element in
End4 (M), but it is clearly not invertible, and not nilpotent since the square of it is itself
(which is non-zero by assumption).

Suppose M is indecomposable. Let f €End4 (M), because k is algebraically closed, we can
decompose M = @, M, (as vector spaces as this moment), where A are eigenvalues, and M),
are generalised eigenspaces. Moreover, the M)’s are submodules. Indeed, if (f — AI)"m =0
for some n, then (f —AI)"am = a(f —AI)"m = 0 for any a € A. Since M is indecomposable,
we see M = M,. Note that f is nilpotent iff eigenvalue is 0, and is invertible iff 0 is not an
eigenvalue. So f is either nilpotent or invertible. O

We now prove Krull-Schmidt Theorem.

Theorem 1.3.7 (Krull-Schmidt). Assume A is an algebra over an algebraically closed field
k . Let M be an A-module, suppose that

M:U1@®Ur
:Vl@...@‘/&

where U;, V; are indecomposables, then r = s and U; = V; up to some permutation.

Proof. Let py, be projection to U; and py, be projection to V;. Consider py, opy, |v, €EndaUi,
by the above proposition, it is either invertible or nilpotent. But

> puipv, v, = pu, o L, = 1o,
J
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So not all of py,py,|y, can be nilpotent, we may assume that py,py, |y, is invertible with
inverse ¢q. Consider
U, vy luy v Uy vy U, q U,

To ease the notation, let o = py, |y, and 8 = qo py,|v,. We claim that V; = Im(«a) & ker(5).
If = is in the intersection, then x = a(y), for some y € Uy, and y = pay = fz =0, s0o x = 0.
And if z € V4, then write z = (2 — affz) + afz, and z — afz € ker 3, afz € Ima. Since V] is
indecomposable and Im(«) # 0, we conclude that ker(5) = 0 so «, 8 are isomorphisms and
U = V.

We would like to proceed by induction, but we have to check that Uy N (Vo @ --- @ V5) = 0.
Assume it is true, then M = U; @ Vo & --- @ V,, and we will be done by induction and
considering the module M /U;. But if z is in the intersection, then x = fax, and o = py, |,
is zero on V5, ..., Vi. So x = 0 and this completes the proof. O

Remark 1.3.8. Sometimes we will need a stronger result than this. For example, under
certain conditions, we can drop the assumption that £ is algebraically closed. We will quote
the result without proof. For a detailed discussion, see [Sch13, Thm 4.7]

Theorem 1.3.9 (Krull-Remak-Schmidt). The unique decomposition property still hold in
the following situations:

1. M is of finite length
2. Ais left Artinian and M is finitely generated

3. A is left Noetherian, A/Rad(A) is left Artinian, any finitely generated A-module is
complete, and M is finitely generated

4. A is an Ap-algebra, which is finitely generated as an Ag-module, over a Noetherian
complete commutative ring Ay such that Ag/Rad(Ap) is Artinian, and M is finitely
generated. (We took Ay = k)

Clearly this is the situation we are in. We will sometimes use this theorem without quoting
in the future. And we now see that projective indecomposable modules are exactly the
indecomposable modules for group algebra k[G].

1.4 Modular Representation

We now fix our Artinian algebra A to be k[G] and char(k) = p. So far we haven’t touched
on how the characteristic of the field k can affect the algebra. It turns out k|G| behaves
quite differently depending on whether char(k) | |G| or not. When char(k) | |G|, we say it
is modular representation , and the other case ordinary representation.

Theorem 1.4.1. (Maschke’s Theorem) The group algebra k|G| is semisimple if and only if
char(p) 1 |G|.

12



Proof. Let V be a k[G]-submodule. It suffices to prove that V' is a direct summand. Let
7 be any k-linear projection from k[G] onto V. Consider the map ¢ : k[G] — V given by
o(z) = ﬁ dgec 9 m(g~'-x). Then ¢ is again a projection: it is clearly K-linear, maps k[G]
onto V', and induces the identity on V. Moreover we have:

so p is in fact k[G]-linear. By the splitting lemma, k|G| = V @ker ¢. Thus k|G| is semisimple.

Conversely, For x = >  A\,g € k[G] define e(x) = > A,. Let I = kere (the augmentation
ideal). Then I is a k[G]-submodule. We claim that for every non-trivial submodule V' of
kIG], INV # 0. Let v = > g9 be any non-zero element of V. If e(v) = 0, the
claim is immediate. Otherwise, let s = > _,g. Then €(s) = [G|-1 = 0so0o s € I and
sv = (D9) Q- peg) = D €(v)g = €(v)s so that sv is an element of both I and V. This
proves that V' is not a direct complement of I for all V', so k[G] is not semisimple. O

Remark 1.4.2. For the converse, alternatively, it is easy to see that k[G]/I is the trivial
module. But gs = s for all ¢ € G. So (s) is also trivial, and this contradicts the remark
after Wedderburn.

Recall that over C, the number of representations of a group equals the number of conjugacy
classes of that group. We want to achieve something similar in the modular case. But we
need to establish some basic lemmas.

Definition 1.4.3. Say G is a group. An element g is said to be p-regular if its order is not
divisible by p. Otherwise it is called p-unipotent.

Lemma 1.4.4. Let G be a group. Then we can uniquely write ¢ = xy where = and y
commute, and z has order p* and y is p-regular.

Proof. Suppose g = xy with x has order p* and y is p-regular, choose m large enough so
that 27" = e, so we have ¢g?" = y?". Since the order of y is coprime to p, we can choose
m such that p™ = 1 modulo the order of y. Thus y € (g), hence x too, which implies the
commutativity since they lie in a cyclic group.

So we reduce to the cyclic case. Write C), = Cpa X Cpiar X+ - -XCp an. Let g = (g0, g1, -, gn) €

G, and then let © = (go,e,...,e) and y = (e, g1, ..., 9gn). Moreover, this is unique, since x has
to have the form (g", e, ..., e), where ¢’ is a generator of Cya, but theny = (909", g1, - - -, gn),
this has order coprime to p if and only if gog' " = e. O

Let A’ be the subspace of k[G] generated by commutators [z, y] = 2y — yz (i.e., the ‘derived
algebra’). Tt is spanned by things of the form g — hgh™!. So it consists precisely of things

13



of the form ) a,g where the sum of a, over every conjugacy class vanishes. This clearly
implies that the codimension is equal to the number of conjugacy classes.

Let R = {x € Alz?" € A’ for some N}, it should be thought as the ‘p-radical ideal’ of A’.
We will use this to prove Brauer-Nesbitt. But let’s first prove it is indeed a vector subspace,
so that it makes sense to talk about dimensions.

Lemma 1.4.5. If a,b € k[G] then a” + WP = (a + b)? in k[G]/A".

Proof. Note that (a + b)P — a? — bP is a sum of groups of p terms involving compositions
of a and b. We can partition them into things that differ by a cyclic permutation. The
commutator (aaba...)x — z(aaba...) € A’ by definition, so the sum of things in a block is
congruent to p times the first term, which is 0. O]

Lemma 1.4.6. If a € A’, then so is a”.

Proof. Indeed, if a = _ a;[z;, y;] then by the previous lemma a? = Y a¥ (z;y;)? — af (yix;)P
in k[G]/A’. But (xy)? — (yx)? = xz — zx € A", where z = yzyz .. .y. O

Lemma 1.4.7. If a,b € R, then so is a + b.

Proof. Note that if the 2P" € A’ for some n then it is true for all larger n. Therefore, we may
assume that a?” , " € A’ and then by the first lemma (a+b)?" = a?” + " in k[G]/A". O

Now we give the mean theorem:

Theorem 1.4.8 (Brauer-Nesbitt). The number of simple modules for k[G] is the number
of p-regular conjugacy classes (conjugacy classes consisting of elements whose order is not
divisible by p)

Proof. Let {C;} be the p-regular conjugacy classes and D; = {g € G | p-regular part of g €
C;}. We claim that R = {3 a,g | . a, = 0 on each D;}. Indeed, write |G| = p"m. Choose
some N > k such that p¥ = 1 (mod m). Then raising to the p" power maps each element
g € G to its p-regular part, and R is the pre-image of A’ under this map. So R = {f € k[G] |

> gec, 77 (9) = 0} = {f € K[G] | X yep, F(9)”" = 0} but 32 cp f(9)" = S yep, £(9) (mod
p) (recall the field has characteristic p), and this completes the claim.

Since Rad(A) is nilpotent, Rad(A) C R. Recall we have that A/Rad(A) = @, Matgy, (k). We
consider the image of A’ or R in A/Rad(A). In each Matgy, (k) the image of A’ the subring
generated by commutators, which is the trace-zero part. Because R is {x|x”N € A}, R and
A’ have the same image (Tr(z*") = 0 iff Tr(z)?" = 0. Indeed it is a consequence of Fermat’s
little theorem and by considering the algebraic closure). Since Rad(A) C R we see that the
codimension of R is equal to both the number of p-regular conjugacy classes, and the number
of distinct simple modules. O

Now we get a corollary that is going to be helpful in the next chapter.
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Corollary 1.4.9. If G is a p-group, then the trivial k£[G]-module is the only simple k[G]-
module.

Proof. The identity element is the only one with order not divisible by p so it is a unique
simple module by above. On the other hand, the trivial module is simple. O

1.5 Idempotents and Blocks

In this section, we will take a short detour to idempotents and blocks. We will need them
to talk about projective covers in the next section, especially Proposition 1.6.6. This is also
the building block of Chapter 3. Also note, blocks are central objects of study in modern
group representation theory. And it has many open problems (see Afterword).

Definition 1.5.1. An idempotent in A is a non-zero element e such that e? = e.

Remark 1.5.2. Note if e is an idempotent, then so is 1 —e. Let Ae be the set {ae,a € A},
then this is a left ideal of A. The set eAe = {eae,a € A} is a ring with unity e. And we have
4A = Ae® A(1 —e). Also note that if M is a left A-module, then eM can be considered as
a left eAe module.

Lemma 1.5.3. 1. If M is an (left) A-module and e is an idempotent in A, then eM =
Hom,(Ae, M) (as abelian groups at the moment).

2. We have the ring isomorphism eAe 2End 4(Ae)® (where © means the opposite ring)

Proof. 1. Define f; : eM —Homu(Ae, M) by fi(em) : ae — aem, and fo :Hom4(Ae, M) —
eM by fo(1) = ¢(e). They are clearly inverses of each other.

2. Let M = Ae in 1, we need to check it is compatible with the multiplication and it
reverses the order of multiplication on the right hand side. But ea;eease = eaiease —
(be — beajease), and if a(be) = beaje and ((be) = beage, then o o 5(be) = a(beage) =
beaseaye.

[]

Definition 1.5.4. Two idempotents e, f are orthogonal if ef = fe = 0. An idempotent e is
said to be primitive if it can not be written as e = e; + e, where ey, e; are orthogonal.

Remark 1.5.5. Note there is a bijection between the set of pairwisely orthogonal idem-
potents {e;} such that 1 = e; + .-+ + e,, and the direct sum decomposition of modules
A=A ®--- @A, given by A; = Ae; and e; = 1;(1), where v; is the restriction to A; of
the isomorphism A = @ A;. We see that e; is primitive if and only if A; is indecomposable.
Also note that A is semisimple if and only if every right (or every left) ideal is generated by
an idempotent.
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Definition 1.5.6. An idempotent is said to be a central idempotent if it is an idempotent
in the centre of A. A primitive central idempotent is an idempotent that is central and
primitive.

Remark 1.5.7. There is a bijection between the set of pairwisely central orthogonal idem-
potents {e;} such that 1 = e; +- - -+e,, and the direct sum decomposition A = B1&---® B,
where B;’s are two-sided ideals of A. And again, primitive if and only if indecomposable.

Definition 1.5.8. The indecomposable two-sided ideals are call blocks of A.

Lemma 1.5.9. This decomposition is unique.

Proof. Say 1 =e1+---4+e;=fi+ -+ fi. Thene; =e;f1 + -+ e; f, but e; is primitive
and e; f; is either zero or central, we see e; = e;f; = f; for some j. m

Remark 1.5.10. Let M be an indecomposable A-module. Then M =e ;M & --- ® e, M as
left modules (since e; is central). But M is indecomposable, so we see for some i, e;,M = M
and e;M = 0 for j # i. We say M belongs to the block B;. Clearly if an indecomposable
module is in a certain block, then so are all its quotients and submodules.

We will need the following proposition for the next section.

Proposition 1.5.11. Let I C R be a two-sided ideal and suppose that every element in [ is
nilpotent, then for any idempotent € € R/I there is an idempotent e € R such that e+ 1 = ¢

Remark 1.5.12. We have showed that the Rad(A) is a two-sided nilpotent ideal, and
therefore every element in Rad(A) is nilpotent.

Proof. Let ¢ =a+ I and b = 1 — a. Then ab = ba = a — a* € I, and hence (ab)™ = 0 for
some m > 1. Since a and b commute, we have

2m m 2m
2 o 2 o 2 o
1=(a+b)* =) ( ?)am’b’ = ( 7)@27”%’4— ) ( ;n) a2l

i=0 i=0 i=m+1

We let e be the first term and f be the second term. Since for any 0 < ¢ < m and
m < j # 2m we have a*"~b'a?*™ I = g™y a3m I = (ab)maPM T INTIT™ = 0, we
see that ef = 0. It follows that e = e.1 = e(e + f) = €2, so e is an idempotent. Finally,
ab € I implies that

e+ = a2 + (Z ( m)GQm—z—lbz—l)ab_i_I - 4+ 7= Mmoo
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1.6 Self-injectivity

This section is the punchline of this chapter, we will use multiple results in this section in
the future chapters. In this section, we will prove a k[G]-module is projective if and only
if it is injective and some of its consequences. We will use the general notion of so called
symmetric Frobenius algebra following [Ben98a, Chapl,3]. We sometimes distinguish left and
right modules in this section, let M4 be a right module, and 4 M be a left module. And we
denote the dual of M by M*.

A word on dual: Normally, if we have a left module M, the dual is defined to be the right
module M* =Homu(M, A), with the action (a - f)(m) = f(am). This is a right module
because ((ba) - f)(m) = f(bam), while (b- (a- f))(m) = (a- f)(bm) = f(abm). So following
the normal convention, we should write f-a instead of a- f. But group algebras are special,
they are part of the bigger class call Hopf algebras.

A bialgebra over k is an algebra with a comultiplication A : A - A ®; A and a co-unit
€ : A — k satisfying some obvious commutative diagrams. A Hopf algebra is a bialgebra
with an k-linear map S : A — A called the antipode such that if S(a) = >, t; ® v;, then
Yo iS(w) = >, S(i)vi = €(a).1 € A. For a group algebra, comultiplication and co-unit
is defined as the following: A(> . 7¢:) = >, 7:9; ® g; and (>, 75g:) = >, i, with usual
multiplication and unit defined as V : A @, A — A, Z” i ® g; — Z” 7i79:9; and
n:k — Az ze, while the antipode is S(>_,r0:) = >, rig; '. With this we can view
the dual as a left module via the antipode a.m = m.S(a) and vice-versa. So from now
on, when we have a group algebra, we take the dual to the left module with the action
(g- f)(m) = f(g~'m) for g € G. (For more details, see [Ben98a, p.51-52])

It is clear that if L is a submodule of M then M* has a submodule naturally isomorphic to
(M/L)* and the quotient M* by this submodule is naturally isomorphic to L*.

Definition 1.6.1. Let A be an algebra over k.
1. We say A is Frobenius if there is a k-linear map A : A — k such that ker(\) contains
no non-zero left or right ideals.
2. We say A is symmetric if it is Frobenius and A(ab) = A(ba) for all a,b € A.
3. We say A is self-injective if the left module 4A is an injective A-module.

Proposition 1.6.2. 1. If Ais a finite dimensional Frobenius algebra over k, then (A4)* =
AA. In particular, A is self-injective.

2. If A is self-injective, then if M is a (left) f.g. module over A, then the followings are
equivalent:
(a) M is projective
(b) M is injective
()
)

(d) M* is injective

M* is projective
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Proof. 1. We define ¢ : 4A — (Aa)* by ¢¥(x) : y — A(yx). This is a module homomor-
phism because if z € A, then ¥(zz)(y) = AMyzz) = ¥(x)(yz) = z(¥(x))y. This is
injective since if it is not, then we have a non-zero x such that ¢(z) is the zero map.
Le., AMyz) = 0 for all y € A. So the non-zero ideal generated by x is in the kernel,
which is impossible. It is therefore surjective by dimension counting.

2. We first note that (a) and (d) are equivalent by definition. Similarly, (¢) and (b) are
equivalent. Since A is self-injective, we see that (a) and (c) are equivalent. Hence they
are all equivalent.

]

We now specialise to group algebras.

Proposition 1.6.3. The linear map A :k[G]— k by A(3_ . 749) = 7. satisfies the condition
of the definition of a symmetric Frobenius algebra.

Proof. Let I be a non-zero left ideal. Say zgea reg is in I with r, # 0, then so is
DY gec Tgg- But if we apply A to this element, we get a non-zero image. So it is Frobenius.
It is clearly symmetric, because

)\(Z e - Z sph) = Z TgSg—1 o M Z SgTg-1 = )\(Z Sg4 - Z rh).

geqG heG geG geG geqG heG

O

Theorem 1.6.4. Suppose P is a projective indecomposable module for a symmetric Frobe-
nius algebra A. Then Soc(P) = P/Rad(P).

Proof. Let e be a primitive idempotent in A with P = Ae. Let A : A — k be the map in
the definition of the Frobenius algebra A. Since P is projective indecomposable, we see that
Soc(P) is simple and Soc(P) = Soc(P).e is a left ideal in A. So there is an x € Soc(P) with
A(ze) # 0. But A is symmetric, so A(ex) # 0 and so e.Soc(P) # 0. But by Lemma 1.5.3,
e.Soc(P) =Homu (P, Soc(P)), so there is a non-zero homomorphism from P to Soc(P). By
the definition equation of Soc(P), we see this induces an isomorphism between P/Rad(P)
and Soc(P). O

We now introduce the concept of projective covers. It will be helpful especially in Section
2.2.3.

Definition 1.6.5. 1. A homomorphism f : M — N is called essential if it is surjective
but f(L) # N for any proper submodule L.

2. A projective cover/envelope Py of M is a projective module with an essential map

Proposition 1.6.6. If A is Artinian, then projective covers exist for all finitely generated
A-modules.
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Proof. We can write 1 + Rad(A) = ¢; + -+ + €. as a sum of pairwise orthogonal primi-
tive idempotents ¢; € A/Rad(A). Since A/Rad(A) is semisimple, we have A/Rad(A) =
A/Rad(A)e;+- - -+A/Rad(A)e, is a direct sum of simple A/Rad(A) modules. Let M be an A-
module, then M /Rad(M) is an A/Rad(A) module, and write L;@- - -@® L, where L;’s are sim-
ple A/Rad(A) modules. So for each i, we have L; = A/Rad(A)e;, for some i;. By Prop.1.5.11,
we find idempotents eq, ..., e, € R such that e; + Rad(A) = ¢;. So we have the following
isomorphism €P;_, Aej,/Rad(A)e;, = Pj_, A/Rad(A)e;, = Dj_, L; = M/Rad(M).

Let Py = €D)_, Aej,, it has a clear projection to M/Rad(M) via the above isomorphism. Tt
is clearly a projective module. So we have a diagram.

It remains to show f is essential. Since [ is surjective we have f(Py) + Rad(M) = M, and
the Nakayama’s lemma 1.2.11 implies that f is surjective. Moreover, ker(f) C Rad(Pys) by
construction. Hence if L C Py is a submodule such that f(L) = M, then Py, = L+ker(f) =
L + Rad(Py), and by Nakayama’s lemma again Py, = L, so f is essential. O

Proposition 1.6.7. The projective cover is unique up to isomorphism.

Proof. Say P and P’ are projective covers of M with maps f: P — M and f': P' — M.
Then by projectivity there exists g : P’ — P such that f' = f o g. Since f’ is surjective we
have f(g(P')) = M, and since f is essential we deduce that g(P’) = P. This shows that g
is surjective. Then by an alternative definition of projectivity, there exists a homomorphism
s: P — P’ such that gos =idp . We have f'(s(P)) = f(g(s(P))) = f(P) = M. Since f’ is
essential this implies s(P) = P’. Hence s and g are isomorphisms. O

Theorem 1.6.8. Suppose k is algebraically closed. There is a bijection between the set of
projective indecomposable modules of A and the set of simple modules of A by sending P
to P/rad(P). And the inverse is given by taking projective covers.

Proof. Given a simple module S, we see by construction the projective cover is an inde-
composable module P such that P/Rad(P) = «(f(P)) in the proof of Prop.1.6.6. But
Rad(S)= 0, so we see P/Rad(P) = S. So we see the composition of the two maps described
in the theorem is identity on the set of simple modules. For the other direction, we invoke
the uniqueness of projective covers by Prop.1.6.7. So by above we need to show @)/Rad(Q)
is simple for all projective indecomposables Q).

We claim that End(Q/Rad(Q)) is a quotient of Ends(Q) (which we know is local by
Prop.1.3.6), hence local. Then @/Rad(Q) is semisimple and indecomposable, hence simple.
Any endomorphism of @) takes Rad(Q) into itself, since Rad(Q) = Rad(A)Q. So there is a
map f :End(Q) —End(Q/Rad(Q)). By the lifting property of projective modules, we have
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a diagram for every a €End(Q)/Rad(Q)):

5 Q
Q Rad(Q)

§07 la
v

Q
Q Rad(Q)

So the map f is surjective. Therefore by the other implication of Prop.1.3.6, we see that
Q/Rad(Q) is simple. O

The following corollary will be very useful when calculating the decomposition of a group
algebra.

Corollary 1.6.9. In the decomposition of A into the direct sum of projective indecom-
posables, each projective indecomposable occurs as many times as the dimension of simple
modules.

Proof. Say A = Py +---+ Ps, multiply by Rad(A) we get Rad(A) = Rad(P;)+---+Rad(Ps).
Taking quotient we get that A/Rad(A) = P,/Rad(P;) + --- + Ps/Rad(Ps). But A/Rad(A)
is semisimple, so now we use Wedderburn’s Theorem and this completes the proof. O]

Corollary 1.6.10. Let M be a projective module for G . If p™||G|, then p™ divides dimy M

Proof. Let P C G be a p-Sylow subgroup, and say |P| = p™. If M is a projective inde-
composable for G, then M remains projective as a k[P]-module, since k[G] = k[P]¢] by
Lagrange. So M is a direct sum of copies of k[P] as a k[P]-module by the 1 — 1 corre-
spondence and dimension counting and Corollary 1.4.9, hence it’s dimension is a multiple of
dimgk[P] = p™. O

Remark 1.6.11. Combining Theorem 1.6.8 and Theorem 1.6.4, we see again that Soc(P)
is simple when P is a projective indecomposable module. But note there is a more direct
proof without using Theorem 1.6.4 but Prop.1.6.2. Since P is a projective indecomposable,
so is P*. So P*/Rad(P*) is simple. However Soc(P)* = P*/Rad(P*) (this does not need
Theorem 1.6.4, it follows from the last paragraph of the discussion on 'a word on dual’” at
the start of this section), so Soc(P), the dual of Soc(P)* is also simple.
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Chapter 2

Character Theoretic Approach: The
CDE Triangle

In this section we will move to character theory and build Brauer characters and relate
them to ordinary characters. In particular, we will see the orthogonality relations and some
computation examples. We will later use the theory we build in this chapter to prove
an important theorem in the next chapter. We will usually follow [Ser77, Part III], but
sometimes will switch to [Sch13] or [Fenl5] for more details and comprehensible proofs.
Throughout, we fix a prime p and char(k) = p.

2.1 The Setup

Again, the problem lies in the possibility that modules can be non-semisimple. But as in
any other case, if it is not semisimple, we just force it to be semisimple. And this is the
exact idea of the Grothendieck group.

Definition 2.1.1. The Grothendieck group consists of the isomorphism classes of k[G]-
modules modulo the relations [M] = [M'] 4+ [M"] for every short exact sequence

0> M —-M-— M —0.

We denote by Ry (G) the Grothendieck group of finitely generated modules over the relevant
field k, and Py(G) the Grothendieck group of finitely generated projective modules over k

Remark 2.1.2. Clearly, both Rx(G) and Py(G) are finitely generated when considered as
abelian groups (by adding formal inverses and taking the direct summation as the group
operation). The finitely generated aspect was discussed at the beginning of the last chapter,
and the well-defined aspect is basically a restatement of the Jordan-Holder Theorem, where
it says the composition factors will be the same no matter what composition series we take.
Therefore we have Ry(G) is free abelian and generated by the set of simple modules and
P(Q) is generated by the set of projective indecomposables.
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The main technical tool that we will use is a (0, p)-ring A for k (following Serre’s notation
and see [Ser79]), which is a complete local commutative integral domain A such that

e There is a maximal ideal m such that A/m = k.

e The field of fractions of A (which we call K, capitalised) has characteristic zero.

The example to keep in mind is when k = F,, then the field will be K = Q,, (p-adic numbers)
and the ring of integers will be A = Z,, (p-adic integers), with the ideal m = pZ,, (the elements
with norm < }D) and Z,/pZ, = T, (see [Ser79]). For other fields of characteristic p, the field
K we get is just some extension of QQ,,, and in particular when % is a finite extension of F,
(so a finite field of characteristic p), the field K will be a finite extension of Q,.

The idea is to treat the representations of G over K as it is over C, since it has characteristic
zero and it behaves nicely when the extension is big enough. And the modular representations
(which is what we are after) are linked to the representations of G over K using the map
going from K to k.

Remark 2.1.3. Note that Ry (G) = Px(G) (the Grothendieck group of projective K[G]-
modules) because K[G]-representations are semisimple in characteristic 0, so the simple
modules are projective (by Maschke’s Theorem).

The main objective is to prove the existence of a commutative triangle.

2.2 The CDE Triangle

The triangle above is called the CDE triangle!. We now define the maps separately. We will
sometimes write f(M) instead of f([M]) for f = ¢,d, e and an appropriate module M.

2.2.1 The map c

This is the easiest map of the three to define. From the previous section, the set of simple
modules [S;] is a basis of Ry(G) as a finitely generated free abelian group. Also, the set of
projective indecomposables [P] is a basis of P,(G). Thus, we can define ¢ to be the map in

these bases to be
AEDIEIE
4,J

!The letter c is for the Cartan matrix which we will see later, the letter d may stand for ’decomposition’,
but there might be some historical reasons as well. Nevertheless, it won’t bother us.

22



, where ¢;; := the multiplicity of S; in P;. Again, we had multiple discussions on the well-
defined aspect of this. Later we will see that ¢;; = ¢;;. The matrix C defined as Cj; = ¢;; is
called the Cartan matrix. Later we will show it is symmetric.

2.2.2 The map d

This map d is slightly harder to define. Firstly, recall that given a finite-dimensional vector
space V over K, a lattice is a finitely-generated A-module L C V such that L spans V .
This L will be a free module on some basis of V' (Recall that A is a PID, and torsion-free).

So to get d(M), where M is an K[G]-module, we first take a lattice L C M and then map
this to [L/mL] € Ri(G).

There can be several issues with this definition. Firstly, we have to choose L such that it is
G-stable. This is in fact not too hard to do: just take any L, and form the lattice > geq 9L
(recall G is finite), which will be G-stable. A more important question to address is the
dependency on the lattice L. The next proposition shows that this construction is in fact
independent of L.

Proposition 2.2.1. If L,/ € M are G-stable lattices, then L/mL and L'/mL’ have the
same composition factors, i.e. [L/mL] = [L’/mL'] in Rx(G) .

Proof. Recall that A is a local PID, therefore all ideals are of the form m™. So for some
n, we have m"L' C L. Replacing L’ by m™L’ doesnt change L'/mL’, so we may assume
without loss of generality that L’ C L. Similarly, we have m¥ L C L’ | hence we have a tower
mV ) c mVL Cc L' C L. Now we will prove by induction on N. If N = 1, denote A = L/L’
and B = L'/mL, and we have a tower:

L

A
L/

Thus [L/mL] = [A]+[B] = [’ /mL']. For the general case, define L” = L' +m" "' L. Then we
havem™ 1L/ cmVN 'L c " Cc LandmL' cmL’" C L' C L" asmL" =mL'+m"L C L. By
the inductive assumption, [L/mL] = [L”/mL"] from the first tower, and [L”/mL"] = [L'/mL/]
by the second tower. And this completes the proof. m

2.2.3 The map e

This is the hardest map to define, we first need some preliminary results.
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Lemma 2.2.2. Let P be an A[G]-module which is projective as an A-module. Then P is
projective as an A[G]-module if and only if there exists an A-linear map v : P — P such
that z = > ;g u(g'x) for all z € P.

Proof. ( =) If P = A[G], then we can take u(g) = 1 if ¢ = 1 and 0 otherwise, and this
visibly works. Therefore, we can find such a u if P = A[G]" by writing u in coordinate.
Therefore a u exists if P is projective, as we can write P & P’ = A[G]" and compose the u
from the free case with the projection to P.

( <) We need to show P has the defining property of an A[G]-projective module. Let
v: P — M’ be a map of A[G]-modules, and M — M’ be a surjection. Consider then as
A-modules, we get an A-linear map s : P — M such that v = fs. Using the Maschke’s
Theorem’s trick, let ¢t : P — M be the map t(z) = 3 ;9 - u(¢g~'2). This is now an
A[G]-module homomorphism by construction, and we show it lifts v:

Ft(@) = g(fsu(g'x))
geG
=Y glvu(g'x))

= w(gu(g~'x))

geG

= v(z)

]

Proposition 2.2.3. If P is an A[G]-module that is free as an A-module, then P is projective
over A[G] if and only if P/mP is projective as a k[G]-module.

Proof. ( =) Given a surjection M — M’ and Let P/mP — M’ we can compose with the
morphism P — P/mP, and lift to a map P — M by considering them and A[G] modules.
Since m kills M, this lift factors through P/mP.

( <= ) Suppose that P := P/mP is projective, and let 4 : P — P be an endomorphism
as in the lemma. We can lift @ to a map ug : P — P satisfying x = deG guo(g~tx) (mod
mP). Then we let u)(x) = 3 c;guo(g~'w). As P is a free A-module, the determinant of
uy is a unit. (A is local, and detu; = 1 (mod m), so det € A*.) So u; is invertible (so the
determinate is not in the maximal ideal). So we can find v; : P — P such that uyv; =Idp.
Define u = ugvy, then © = wyvi(r) = 3 59 - uo(g 'viz) = 3 cqu(g~'z). Then by the
previous lemma, we are done. O

We also want to show that every projective k[G]-module is of the form P/mP for some
projective A[G]-module P. Recall that we have shown in the last chapter that the projective
envelop always exists and is unique (for group algebras at least).

Theorem 2.2.4. If P is a projective k[G]-module, then P = P/mP for some projective
A|G]-module P.
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Proof. Let p : P, — P be a projective envelope of P as an (A/m")[G]-module. We claim
that P = P, / mP,. The map P, — P obviously kills mP,, so we certainly have a surjection

P,/mP, — P. We just have to show this is an isomorphism. There is a (k[G]-linear) splitting
s: P — P,/mP, since P is projective over k[G]. Now s(P) maps isomorphically onto P,
but since p is essential the image of the splitting must be full: s(P) = P,/mPB,.

We now take P = ILn P, (recall that Z, = 1&1 Z/p"Z). We only need to show it is projective.
Given a surjection M < M’ and a map P — M’. There exists a map P, — M, such that
it commutes with the other maps. And glue them together to a map P = @Pn — M =

@Mn.
[l

It remains to show uniqueness of this P. Suppose that we have a diagram

P——P/mP

|

P ——=P'/mP'

So, we have shown that the map P4(G) — Px(G) is an isomorphism. Then we can define
the K[G]-module K[G] ®ajq) P = K ®4 A|G] ®aiq) P = K ®4 P. And this defines the map
e: P.(G) = Rk(G).

We can use projectivity to lift maps P — P’ and P’ — P, which are inverse modulo the
maximal ideal. This implies that their composition is the identity (as A is a local PID,
d(m) = ¢p(1)p(m), so m = ¢(1)m and ¢(1) =1 as it is an ID).

So really, the CDE triangle looks like this

Py(G) - G)
P—P/mP L/mL
Py (G)/ | \RA (G)

We can see from the diagram that there is some certain symmetry in the maps e and d. In
the next section, we will explore this.

2.3 Commutativity and Adjointness

At this stage, it is worth to point out that L/mL = A/m ® L in the construction of d.
Consider the exact sequence 0 - m — A — A/m — 0 and tensor with L, Because it is right
exact, we have m®4 L - A®4 L - A/m®4 L — 0. And since our L is flat, we get the
desired isomorphism. (See [AM69, Exercise 2, P31])
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Proposition 2.3.1. The CDE triangle is commutative.

Proof. We start at P4(G). Let P be a projective A[G]-module. And let’s chase the diagram.
Going up we get ¢(P/mP) = [P/mP]. Going down, we first get K ® P, but then we have to
choose a G-stable lattice, we may just as well choose P (Any finitely generated projective
A-module is free), then it goes to [P/mP]| € R,(G). So the triangle is commutative. O

Now we explore the symmetry of the triangle. We introduce two pairings: Py (G) x Ri(G) —
Z and Rk (G) x Ri(G) — Z. For ([P], [E))ia € Pu(G) x Ri(G), we define ([P], [E])xq =
dimpHomyq (P, E). 1If Sy, ..., Sk, Py, ..., Py are simple modules and the corresponding pro-
jective indecomposables, then they form a dual basis since P; has a homomorphism to
S; = P;/Rad(P;) and to no other S; for j # i. The other map is the familiar pairing from
ordinary character theory: ([E], [E])k(q) = dimgHomgq(E, E'), so ([E], [E'])kia) = 0g,e
if £, £’ are simple, where dg g is the Kronecker Delta (at least when K is big enough).

Proposition 2.3.2. The maps d and e are adjoint with respect to these pairings, i.e. if
[P] € Pi(G) and [E] € Ri(G), then (e[P], [E])kic) = ([P], d[E])ia)-

Proof. Let P = [P'/mP’] for some finitely generated projective A[G]-module P’. We pick a
G-stable lattice L C E . The asserted identity then reads

dimkHomk[G}(P’/mP', L/mL) = dmeHOHIK[G](K XA Pl, E)

We have
= HOIHA[G](P/, L)/HOIHA (P mL)
= Hom ) (P’ )/mHomA (P, L)
=k®y HomA ( L),

where the last line follows from the remark at the beginning of this section and the second
identity comes from the projectivity of P as an A[G]-module.

On the other hand,

HOHIK[G](K XA P’,E) = HomK[G}(K Xa P/,K®A L)
=K ®y HOIIlA[G](P/,L).

Both P’ and L' are free A-modules. Hence Hom 4 (P’, L) is a finitely generated free A-module.
The ring A is Noetherian, so the A-module Hom ;¢ (P, L) is finitely generated as well. We
now deduce from above that the dimensions of two sides are the same.

]

Note that in the previous chapter, we sometimes required the field to be algebraically closed.
We now weaken it a bit.
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Definition 2.3.3. The field F' is called a splitting field for G if for any simple F[G]-module
V', we have Endpg (V) = F.

Clearly, If F'is algebraically closed then it is a splitting field for G.

Theorem 2.3.4. Let e be the exponent of G (i.e., the lem of orders of g € GG), and suppose
that F' contains a primitive e-th root of unity; then F' is a splitting field for any subgroup
of G. In particular, it is splitting for G.

The proof is technical, and is not very related to what we are doing, so we only leave a
reference rather than give a full proof.

Proof. [Sch13, Theorem 14.2, p80)] O

So we can get a splitting field of G' by adding roots to IF,,. We now draw attentions to splitting
fields. Note for a splitting field K, we have a linear isomorphism Ry (G) = Homz(Rk(G), Z)
and similar isomorphisms for P,(G) and Ry (G). If we fix the bases of the three Grothendieck
groups, then with respect to these bases and by the previous proposition, we have D=FET.
We then have C = DE = DD?T. It follows that the Cartan matrix C' is symmetric. And in
particular it is square, which confirms the result of Theorem 1.6.8. (Note we reproved it, we
didn’t use it to build the triangle. Although we can not see the isomorphism is canonical.)
We will later use this result to compute some characters.

We now consider two extreme examples (in the sense of the p-adic norm of |G|). The first

one is when |G| is not a multiple of p and the second one is when |G| = p™.

Example 2.3.5. If G has order that is coprime to p, then all maps are identity maps (with
respect to the obvious bases).

The map c is the identity map is because of Mashcek’s Theorem. Let S be a simple k[G]-
module. Then it is also projective. By Proposition 2.2.4, there is an A[G]-module P such
that P/mP = S. Let §' = K ®4 P, then d(S") = S. Obviously, if K ® 4 P is indecomposable
(i.e., simple by Mashcek) then P was indecomposable. Vice versa, if P is indecomposable
then the above reasoning says that P/mP is simple. Because of P/mP = d(K ®4 P) it
follows that K ® 4 P must be indecomposable. Visibly, this is the inverse of the map d. Since
e is the dual of d, it is an isomorphism too. And obviously, with respect to these bases, they
are identity matrices.

Example 2.3.6. If G is a p-group with order p". Then by Corollary 1.4.9 and Theorem
2.2.4, we can identify P,(G) = (k[G]) and Ri(G) = (k) with Z. Then clearly, the map c
is multiplication by p™. For any K[G]-module P and any G-stable lattice L in P, we have
dimyg P = dimyL/mL. Hence the map d maps P to its dimension as a K vector space.

There is one more example that we can consider: G = P’ x P, where P is a p group and P’
has order coprime to p. Then, because it is a direct product, we have k[G]| = k[P] ® k[P'].

Lemma 2.3.7. A k[G]-module M is semisimple iff P acts trivially on M.
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Proof. ( <= ) This follows from that every k[P’]-module is semisimple and k[P] and k[P’]
commutes.

(=) Assume WLOG M is simple. The subspace M’ of M consisting of elements fixed by
P is not zero (this is a restatement of Corollary 1.4.9). Since P is normal in G, the subspace
M’ is stable under G, and thus equal to M, which means that P acts trivially. O

Lemma 2.3.8. A k[G]-module P is projective iff it is isomorphic to F' ® k[P], where F is a
k[P’]-module.

Proof. ( <= ) Since F' is a projective k[P’]-module, F' ® k[P] is a projective k[G]-module
(by the universal property of tensor product).

( = ) Note that F' is the largest quotient of F' ® k[P] such that P acts trivially. By the
previous lemma, F' is semisimple (as a k[G]-module). Via the proof of Proposition 1.6.6, we
see that if P is a projective module, and if E' is its largest semisimple quotient, then P is
a projective envelope for E. Therefore F' ® k[P] is the projective envelope for F'. However,
every projective module is the projective envelope of its largest semisimple quotient. Now
repeat for all F', we see that every projective module has the form F ® k[P]. O

The previous lemma shows in particular that the Cartan matrix is the scalar matrix with p™
on the diagonal. Indeed, for F®k[P] to be indecomposable, we need F' to be indecomposable.
But by Maschke’s Theorem, this is the same as being simple. And [k[P]] = p" - [k]. This
shows the claim.

We will use these results in the future.
2.4 Brauer’s Induction Theorems and More Properties

In this section, we want to prove that c is injective, d is surjective and e is injective. We
will need Brauer’s induction theorems in order to do it. We will need these properties in the
next section (especially Theorem 2.5.14). So the CDE triangle looks like this

Pk(G\ < /Rk(G)

R (G)

But first, let’s establish more preliminaries.

Recall that given a subgroup H C G, we have two maps Res$ : Rx(G) — Rg(H) and
Ind¥ : R (H) — Rg(G) (respectively, Ry and Py). We will take [V] - [W] to be [V ®; W]
(respectively, K'). This makes these abelian groups into rings.

Remark 2.4.1. Ind%(y) - © = Ind$ (y-Res% (z)) for any = € R,(G) and y € Ry,(H) (respec-
tively, K'). This follows from the associativity of tensor products.

28



It is also absolutely clear that the maps c,d, e will commute with Res$. For the maps c, e,
it is also clear that it will commute with Ind%. The map d needs a bit more care.

Lemma 2.4.2. d commutes with Ind$.

Proof. Let W be a K[H]-module. We choose an H-stable lattice L C W. Then
Indf (d[W]) = Indf(d[L/mL]) = [K[G] @y (L/mL)].
Moreover, K [G] @ L = LIS is a G-stable lattice in K[G] @ W = WIEH] Hence,

nd§ (V) = [(K[G) ®xa L)/m(KC) @iy L)
[K[G] @i L/mL)

[]

We will work toward the statement of Brauer’s Induction Theorem. We will need it to prove
the injectivity and surjectivity of the maps.

Definition 2.4.3. Let p be a prime number. A group H is called p-elementary if it is a
direct product H = C' x P of a cyclic group C and a p-group P. A group is called elementary
if it is p-elementary for some prime p.

Since C'is cyclic, we can further assume that C' has order coprime to p. Let H be the family
of elementary subgroups of G.

Theorem 2.4.4 (Brauer’s Theorem). Suppose that that K is a splitting field for every
subgroup of G, then we have

> df(Ri(H)) = Rk(G).

HeH

L.e., every representation of G over K is a direct sum of induction representations of elemen-
tary subgroups.

Remark 2.4.5. A similar theorem is also true if we don’t assume K to be split. Although,
we are not going to use it.

At the cost of losing positive linear combinations, we can even assume that the elements of
Ry (H) we use are 1-dimensional. This is gathered into the following theorem.

Theorem 2.4.6. Suppose that K is a splitting field for any subgroup of GG, and let x €
Rk (G) be any element; then there exist integers mq,--- ,m, (not necessarily positive), el-
ementary subgroups Hi,---, H,, and one dimensional F[H;]-modules W; such that z =

22:1 miIndgi (W3).

29



The proof of these two theorems are hard (the second one will follow from the first). It uses
Clifford theory and Solomon’s Theorem. It probably deserves a fourth year project on its
own. We will only give the reference to the proof rather than giving a full proof. Also note
that the second statement implies that Artin L-functions are meromorphic.

Proof. See either [Ser77, Theorem 27] or [Sch13, Theorem 13.1]. O

Using the above lemma, we get the following:

Theorem 2.4.7. We also have the identities

> Ind§(Ri(H)) = Ri(G)

HeH

and

" d§j(Pu(H)) = B(G).

HeH

Proof. Let 1x (i.e., the trivial rep) (respectively 1;) be the identity element in Rg(G)
(respectively Ry(G)). By Brauer’s Theorem, we can write 1x = >,y Ind% (zg), where
xg € Rig(H). Tt is clear that d(1x) = 1. Apply the above lemma to this equation, we get
that 1y = 3 oy Ind%(2%), where 2y = d(vy) € Ry(H). Thus for y € Rx(G) (respectively
P(Q)), weget y =1y -y =3 ey, A5 () -y = 3 jrey, nd% (2 - ResGy), by the Remark
2.4.1. And this proves the theorem. [

Now we are ready to talk about the surjectivity of d. As noted above, this is true for all K,
but we will only prove for K is a splitting field.

Theorem 2.4.8. The map d is surjective.

Proof. Using the above theorem and the fact that d commutes with Ind%, we just need to
show Ry(H) = d(Rk(H)) where H is elementary. So we assume G is elementary (for some

prime p’). We may as well assume this p’ = p = char(k) (otherwise we will just have Example
2.3.5).

Let G = P x C, where P is a p group and C' is a cyclic group with order coprime to p.
So we are back in the product case. Since the simple modules form a basis for Ry(G), we
may as well assume the k[G]-module S is simple. By Corollary 1.4.9, considering S as a
P representation, we have the trivial representation is a sub-representation of S. Therefore
SP:={seS:gs=sVge P} +#{0}. Since P is a normal, the k[P]-submodule S in fact
is a k[G]-submodule of S. S is simple, therefore S” = S. So P acts trivially on S. Therefore
the action factors through the projection k[G] — k[C]. But C has order coprime to p, so
by Example 2.3.5, we can find a lift of S as a k[C]-module. Now view it as a K[G]-module
through the projection K[G] — K[H] and this is a lift of S as a K[G]-module. O

Corollary 2.4.9. The map e is injective.
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Proof. Since K is a splitting field, we have that e is the dual of d. Since d is surjective, we
have that e is injective. O

Corollary 2.4.10. If P and P’ are two projective A[G]-modules and K ® 4 P and K ®4 P’
are isomorphic, then P = P’ as A[G]-modules.

Proof. This follows directly from the fact that e is injective and Ps(G) = Pi(G). O

Lemma 2.4.11. If |G| = p™m, where m is coprime to p. Then every element of Ry(G)
divisible by p™ is in the image of c.

Again this is true for all K, but we only prove for splitting fields.

Proof. As in the previous theorem, we can assume that G is elementary. Write G = P x C,
which C has order coprime to p. We need to show the cokernel of ¢ is killed by p". By the
argument at the very end of last section, we see the matrix C' is given by multiplication by
p". Therefore the cokernel is killed by p™. n

Theorem 2.4.12. c is injective and the cokernel is a finite p group.

Proof. The statement of the cokernel is a finite p group follows directly from the last lemma.
Recall that Py(G) = Z" = Ri(G) as abelian groups, where r is the number of simple
modules/projective indecomposables. Since the cokernel is finite, so it has rank 0 and R;(G)
and im(c) has the same rank. So the matrix C' is square and is of full rank, so ¢ is injective.

O

This has the following obvious corollaries:

Corollary 2.4.13. If two projective k[G]-modules have the same composition factors, then
they are isomorphic.

Corollary 2.4.14. The determinant of C' is a power of p.

2.5 The Brauer Character

Finally, we are ready to discuss the characters for modular representations. These characters
are named after its founder and one of the pioneers of modular representation theory at that
time, Richard Brauer?.

Recall that we fix K to be sufficient large, i.e., contains a primitive root of lemgyeq|g|. Also
recall that in Lemma 1.4.4, we showed that for any g € G, there exist uniquely determined
elements greg and guni in G such that greg is p-regular, gyn; is p-unipotent and ¢ = gregGuni =
Gunifreg- We let the set Gyeq := {g € G : g is p-regular}. For simplicity, we will assume &
to be algebraically closed. We write CI(G, k) to be the set of class functions from G taking
values in k. We also take an inclusion from K to C (see [AMG69]).

https://en.wikipedia.org/wiki/Richard _Brauer
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Definition 2.5.1. Given a k[G]-module V and any element g € G, we let ay; be the
eigenvalues of the k-linear endomorphism g : V' — V fori = 1,...,dimV and the k-character
is defined as xv(g9) = ag1 + - + Qg dimv-

This is the exact same construction as in the case of ordinary characters (over C), and it
has lots of the same properties as the ordinary characters, in particular it is constant over
conjugacy classes. Since we did not define orthogonal relations for them and Maschke’s
Theorem does not necessarily hold, linear independence needs a bit more work:

Lemma 2.5.2. The k-characters xy € Cl(G, k), where V' is simple, are k-linearly indepen-
dent.

Proof. Consider A = k[G]/Rad(k[G]). By Wedderburn, we have that A = [[/_,Endg(V;) (k
is algebraically closed), where V;’s are simple of both A and k[G] by Theorem 1.6.8. For
1 <i <r, we can pick an element ¢; €Endy(V;) with tr(¢;) = 1. Let 9; be lifts of them in
k[G], then we have ¢; : V; = V; = ¢; if i = j and 0 otherwise. Extend by k-linearity, we get
Xv; : k[G] — k such that xv, (¢;) = tr(a; V;) = 1if i = j or 0 otherwise. Thenif ) ¢;xy, =0
in CI(G, k), we get > c;xv, = 0 in Homy(k[G], k) and hence 0 = > ¢;xv;(a;) = ¢; for all
1. 0

Thus we have defined an injective map Tr : k ®z Rx(G) — Cl(G, k). We note that R,(G) —
k ®z Ri(G) is not injective (because k has finite characteristic). Next we prove an important
observation:

Lemma 2.5.3. Let V be a k[G]-module and let g € G, then sequences a1, .. ., &g dimy and
Qgrog,1s - - - » Qlgeey dimy COINcide up to a reordering; in particular, we have xv(g) = Xv (reg)-

Proof. Since the order of gy is prime to p the vector space V =V, @ --- @ V; decomposes
into the different eigenspaces V; for the linear endomorphism gyeg : V' — V. The elements
GregJuni = GJunifreg cOommute. Hence guni respects the eigenspaces of greg, i.€., guni(V;) = V;
for any 1 < j < t. The cyclic group (gun) is a p-group. Again, as we saw many times,
by Corollary 1.4.9, the only simple k[(guni)]-module is trivial, so the only eigenvalue of
Gui : V. — V is 1. So we can find a basis of V; such that the matrix guni|v, is upper
triangular and with 1’s on the diagonal. The matrix of g.eg|y; is upper triangular and with
a;’s on the diagonal, where a; is the corresponding eigenvalue. The matrix of g|y, then is still
upper triangular and with ;’s on the diagonal. It follows that g[y; has a single eigenvalue
which coincides with the eigenvalue of gieglv; .

]

Therefore we have the injective map

Trieg : k ®z Rp(G) 5 CUG, k) 2% Cl(Greg, k). (2.1)

In order to talk about Brauer characters, we need to discuss some properties of the field K.
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Remark 2.5.4. Let a € K be any root of unity, then a € A. Indeed, recall A is local and
the maximal ideal will induce a norm on K. This is even more intuitive in the @Q, case. Let
e denote the exponent of G and let e = ¢'p® with p coprime to ¢’. Let p(K) and pe (k)
be subgroups of K* and k* consists of all ¢’-th roots of unity. They are both cyclic of
order ¢’ since A is splitting for G and k is algebraically closed of characteristic coprime to
e¢’. Therefore we have a well-defined homomorphism from g (K) to pe(k), ie., the mod m
map. Furthermore, this is an isomorphism. Indeed, we just need to show it is injective since
they are the same size, but the polynomial ¢ — 1 is separable since p is coprime to €’

Consider the inverse of this map and we can make the following definition:

Definition 2.5.5. For any k[G]-module v, we define the Brauer character to be the K-valued
class function

BV : Greg — K

g Qg1 +-+ ag,dimV7
where the bars mean taking the inverse map.

Remark 2.5.6. It is important to note that it is from Gie; not G. It is a map

Trg : Rp(G) = Cl(Ghreg, K)
V] = By

Because otherwise we can not necessarily take the lift back. Also note that By (g) = xv(9)
mod m for any g € G, by construction.

We will firstly list some very obvious properties that the Brauer characters have:
Lemma 2.5.7. 1. fy(1) = dim(V)

2. By is constant on conjugacy classes of Gieg

3. If 0 - A— B — C — 0 is short exact, then S5 = B4 + B¢

4. Bvew = Pv X Bw

X(9) = B(greg) mod (m)

ot

6. The square in Remark 2.5.9 is commutative

Proof. The proof of 1 — 4 is exactly the same in the ordinary case, and 5,6 are true by
construction. [

Lemma 2.5.8. The Brauer characters gy € Cl(G, K), where V is simple, are K-linearly
independent.
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Proof. Suppose Y cyfy = 0. We may assume that all ¢y lie in A (by multiplying a high
enough power of the generator of the ideal m). So ¢y must lie in m (since k-characters are
linear independent). So write ¢y = wdy, where 7 is the generator of m and dy € A. Then
0=> cyPy =m> dyPy, so we have > dyfy = 0. So dy € m, and we can repeat like this.
So we have ¢y € N;som’ = {0}. O

Remark 2.5.9. Note by construction, we have a commutative diagram

Ri(G) —%— Ry(G)

| |

CL(G, K) —% Cl(Ghreg, K)
Thus we have a commutative diagram

K ®z Rk (G) L ®z Ri(G)

lﬂ lTrB

Cl(G, K) —EE > Cl(Cheg, K)

We know that the map Tr is an isomorphism by results from ordinary character theory
and Res is clearly surjective. Hence Trp is also surjective. Furthermore, it is injective by
the previous lemma. So we have the map Trg is an isomorphism. For convenience, this is
captured into the next theorem.

Theorem 2.5.10. The map Trg : K ®z Rp(G) — Cl(Greg, /) is an isomorphism.

Remark 2.5.11. In particular, they have the same dimension. As a consequence, the num-
ber of isomorphism classes of simple k[G]-modules coincides with the number of conjugacy
classes of p-regular elements in GG. Therefore the injective map defined in equation 2.1 is an
isomorphism. Also the kernel of d consists of the elements whose character are 0 on Gieg.

So far we have characters for R;(G) (the Brauer characters ) and Rx(G) (the ordinary
characters x). To fully explore the power of the CDE triangle, we need to have something
for Py(G) as well. For a projective module P, we proved it corresponds to an A[G]-module
M. We define the character np to be the ordinary character of K ®4 M, i.e., the character
of e(P).

Proposition 2.5.12. The value np(1) is a multiple of p*, where |G| = mp*, m coprime to
b, and TIP(Q) =01if g e G \ Greg~

Proof. The first assertion following directly by restricting to a Sylow p-subgroup and from
Corollary 1.6.10.

Now for the second assertion, write ¢ = gregGuni. We want if gy, # 1, then np(g) =
0. Consider the cyclic subgroup (gu.). P is free as a module over k[(gu.;)] by Corollary
1.6.10 and 1.4.9. Since gy and gun; commutes with each other, we have a decomposition
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P = @ P, (as a k[(guni)]-module), where a runs through the eigenvalue of g, on P, and
P, = {2|gregr = ax}. Therefore each P, is a free k[(guni)]-module. If g, # 1, then
Tr(g|p) =D, Tr(gunilp, ). But Tr(guni|p,) = 0 as P, is free, hence the result. O

Thus we have defined a (unique) map Trp; : Pi(G) — Cl(Gheg, K) such that the square

Py (G) Rk (G)

lTrproj LTI‘

Cl(Greg, K) 25 C1(G, K)

is commutative.
Remark 2.5.13. As in the case of Remark 2.5.9, we have the following commutative diagram

K @7 Pr(G) "% K @7 Ri(G)

lTrproj lTr

Cl(Greg, K) 22— C1(G, K)

Since e is injective and Tr is bijective, we see that Try,; is injective. But
dlmKK ®Z Pk(G) == dlmKK ®Z Rk(G) == dimKCl(Greg, K)

where the first equality follows from Theorem 1.6.8 and the second follows from Brauer-
Nesbitt, so Trp,; is bijective:

Theorem 2.5.14. The map Tr,0; 1 K @z Pp(G) — Cl(Gheq, K) is an isomorphism.

2.5.1 A bit more theory

Recall the CDE triangle, tensor with K we get the triangle

id®c

K ®7 Py(G) K ®z Ri(G)

K ®z RK(G)

But by the previous theorems we can identify them with class functions. So we get the
triangle

id®c

Cly(G, K) Cl(Ghreg, K)

Cl(G, K)
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Here, Cly(G, K) is the set of class functions on G that are zero off Gee. The map id ® d can
be identified with the map Res: Cl(G, K') — Cl(Gyeg, /). The map id ® e can be identified
with the map Ext: Clo(G, K) — CI(G, K) which is an inclusion. And The map id ® ¢ is an
isomorphism.

And recall that we proved C' = DD".

We want to have orthogonality relations for Brauer characters just like as in the ordinary
case. Of course, we are going to do it using the orthogonality relations we have for ordinary
characters.

Proposition 2.5.15. Let §; denote the Brauer character of a simple k[G]-module and let
n; denote the character of an indecomposable projective k[G]-module. Let C' = (¢;;) and
-1 = (fl]) Then:

L & X gecn, Bil)ni(97") = 055
2. G Lgecus Pi(9)Bi(971) = fij
B 1 Lgec M9 (971) = ¢y
We write («, 3) for the above inner product.

Proof. First note that ¢ is injective and has finite cokernel, therefore C' is invertible (over
Q).
We know that

Xj = Zdij@; on Gieg (2.2)

ni = Zdinj on G (2.3)
J

nj = Zcijﬂi on Greg' (24)

So

(15, 7) ZdszkaZ i Xm)

= Z dzkdjm Xk, Xm>

- Z dzkdgm(skm

=Cij,

where the first equality comes from equation 2.3, the third equality comes from the property
of ordinary characters and the final equality comes from C' = DDT.
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On the other hand, using equation 2.4, we have that

7717 77] Z Ckzﬁka Z ij/Bm
Cij = Z CkiCmy 57{7 ﬁm>7
k,m

where the second equality comes from the above and rearranging. This is an array of |Gyeg|?
linear equations. A bit of linear algebra shows that (8, 5,,) = fij-

Finally,
ﬂw 77] B@a Z Ck]ﬁk

= Z Cri ik
k

:5’Lj7

where the first equality is from equation 2.2, the second equality is from the above and the

final equality is by definition.

]

Next we need a technical result on a particular class of characters.
Definition 2.5.16. Let x be an ordinary irreducible character, its p-defect is val,(|G|/x(1)).

Proposition 2.5.17. If x; be an ordinary irreducible character with p-defect 0. Then y; is
in fact a character of K ®4 P, where P is a projective indecomposable over A[G|. Moreover
P/mP is simple and projective as a k[G]-module.

Proof. Let M; be the module correspond to x;. We define e = % > gec xi(gHg € K[G].
We claim that e is a idempotent. Indeed, by the orthogonality property of characters, it acts
as the identity on the simple module with character y, and as zero on any simple module
with different characters. So applying it twice to any representation is the same as applying
it once. So by considering the regular representation, it shows that it’s an idempotent.
Note that since it has p-defect 0 and the characters are algebraic numbers, e is actually
defined over A. Let P; be the projective indecomposable A[G]-module correspond to e and
let k ® P; be the corresponding k[G]-module. Let 7; be the character for it, we then have
that (m;,d(x:)) = (i, >_j-, djiB;) = dji by the above proposition. So in particular M is a
summand of say K ®4 P. So eP # 0, but P =eP @& (1 — e)P and P is indecomposable, so
eP =P. So K ®4 P = aM for some positive integer . So x must vanish on all singular
classes by Proposition 2.5.12. Since the characters of K ® 4 P form a basis of them and o > 1,
we see @« = 1 and hence M = K ®4 P. Moreover, P/mP is clearly projective, it remains to
show it is also simple. But by the above equation exactly one dj; # 0 and therefore it must
be simple. O

Remark 2.5.18. The construction of the idempotent e seems to be a bit magical. But there
is a more general theory behind it (see Chapter 3 and Afterword).
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2.5.2 Examples

Example 2.5.19. (Cyn)

Recall that all characters of an abelian group are 1 dimensional. If k£ has characteristic p,
then Gyes only consists of the identity element. So the only Brauer character is the trivial
one, and

D= (1 1 ... 1) .
And C = DD! = p", which agrees with Example 2.3.6.

If £ has characteristic coprime to p, then the Brauer characters coincide with the ordinary
characters, which agrees with Example 2.3.5.

Example 2.5.20. (Cyclic groups)
Let G be an cyclic group, write G = P, x --- x P,, where P; is a cyclic group of order p;".

Again, all characters are 1 dimensional. If p # p; for all i, then we are back in Example
2.3.5. If p = p; for some 7, then G\, has Gl — I14;p;" elements. Recall that the characters

of an abelian group of order n is given f))& the n-th roots of unity. After fixing a generator
and listing the elements/conjugacy classes in increasing order, the matrix D looks like the
|Glreg| % |G| matrix

1 ... 0 - -1 ... 0

o ... 1 .- - 0 ... 1
and C' looks like the |Gheg| X |Greg| matrix

n

This agrees with the result after Lemma 2.3.8. And the determinate is clearly a power of p;.

Example 2.5.21. (S3)

Recall the ordinary character table of Sj is

|1 (12) (123)
xi|l 1 1
x2 |1 -1 1
xal2 0 -1

Fix p = 3, then we can delete the third column and Res(x3) will be the sum of the first two.
So
1 01
b= (0 1 1>
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and

And the determinate is 3.

Example 2.5.22. (A4;)

Recall the ordinary character table of Aj is

1 (12)(34) (123) (12345) (13524)
xi| 11 1 1 1
X2 |3 -l 0 s 155
xs |3 -1 .
xa|4 0 1 1 1
Xs |5 1 -1 0 0

Fix p = 2. Note that x3 + x2 = X1 + X5 on G, hence Res(x2) and Res(xs) are not
irreducible. We then must have x, — 1 is a Brauer character of a simple k[G]-module and
so is x3 — x1. Note x4 has 2-defect 0 (since 60/4 = 15), and hence is irreducible on Gieg.
Hence

o O O -
O O = =
O = O =
_ o O O
O = ==

and

O NN
S = NN
[l RN V)
_— o O O

. And the determinate is 4 = 22

My supervisor is particularly interested in Ly(7), so here it is.

Example 2.5.23. (L.(7))
Recall the ordinary character table of Lo(7):

Size of Conj. Classes | 1 21 56 42 24 24
Ord. of Elements 12 3 4 7 7
X1 11 1 1 1 1

Xgl) 3 -1 0 1 w w

W 31 0 1 o w

X6 6 2 0 0 -1 -1

X7 7T -1 1 -1 0 O

Xs 8 0 -1 0 1 1

w
Ne)



Here w = %ﬁ and w* is its complex conjugation. ([Willl, Example 2.7.2])

Fix p = 2. If we look at the p-regular part (i.e., ignore the second and fourth columns),

we have that s = x{ + ¥ and v = v1 + X + X on Gueg. s has 2-defect 0, since

168/8 = 21. Therefore the matrix D is:

B By B3 Bs
x1 |1 0 0 0
Wlo 10 o0
W0io o 1 0
s |1 1 1 0
xs | 0 0 0 1
2110
. - orn |13 20
And the matrix C' = D* D is 1 23 0
0001

And the determinate is 8 = 23, In particular we see that the corresponding indecomposable
projective module Py for Sg is equal to Sg and Sg is projective. And dimP; = 8, dimP} =
dimP} = 16. By Corollary 1.6.9, we have the decomposition that

Fa(Lo(7)) = PL & P @ P2%° @ P8,

Also note, from the theory in the final section of chapter 1, we see the radical series for P
has top and bottom terms equal to S; and P; and P? are dual to each other.

Let’s also verify some orthogonality relations on this. Note according to the first row of C,

then character of P is (8,0,2,0,1,1), inner product with 3; will give us

1
T3 X2+ 24x 1424 % 1) = 1;

inner product with gy will give us

1
1TGS(ESX3—1—56><2><0—|r24><1><cu+24><1><w*):0;

inner product with itself will give us

1
@(8x8+56x2x2+24><1+24><1):2,

which is ¢q;.

Finally $; inner product with itself gives

1 )
—(8+56+24+424) = .
168( 56+24+24) 8
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5 -1 -1 0
-1 5 =30

. : 1_1
This is expected since C7" = ¢ 1 -3 5 0
0 0 0 8

We note that once we know the ordinary character table of a group, then it is not too difficult
to find the Brauer characters. However, there is a caveat. The reduction of an irreducible
character is not necessarily a sum of reductions of other irreducible characters. We have seen
this in the example of A5, where we had to take a difference. When the group is large, we
may run into problems since the difference may not have a small dimension.
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Chapter 3

Central Character Theory and
Applications

In this chapter, we will develop a little bit more block theory. We will associate characters
(both ordinary and Brauer) to blocks. Using some computation, we will be able to apply the
theory to group theory and deduce certain conditions on finite simple group. We will follow
[Alp86, Chap IV] and [Fenl5, Section 12, 13]. For the applications in group theory, we will
follow [Fenl5, Theorem 13.14].

3.1 More Block Theory

Recall the definitions in Section 1.5 that blocks are indecomposable two-sided ideals in k[G]
and a module is said to belong to/lie in the block B; if e;M = M and e;M = 0 for all j # i,
where e; is the idempotent correspond to B;.

We will need a more careful characterization of notion of modules belonging to a block.

Proposition 3.1.1. If S are T" are simple k|G| modules, then the following are equivalent:

1. S and T lie in the same block

2. There are simple modules S = Si,...,S,, = T such that S;, S;;; are composition
factors of a projective indecomposable.

3. There are simple modules S = T},...,T,, =T such that T;, T;,; are equal or there is
a non-split extension of one of them by the other.

Remark 3.1.2. The second statement can be rephrased into ‘they are composition factors
of the same projective indecomposable.”. And the third statement can be rephrased into
Ext}g[G}(S, T) # 0. This is true because we have that Homyg (F;,S;) = kif ¢ = j or 0
otherwise (k is big enough).
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We will only use 1 and 2, so we will prove they are equivalent. For a full proof, see [Alp86,
Prop 3, p94].

Proof. (2) = (1). This is true because submodules and quotient modules of a module
belonging to a block also belong to that block.

(1) = (2). Let S belong to B, write B = P,&---& P, ®Q, where the P; are the projective
indecomposables whose composition factors are equivalent to S according to (2) and @ to be
the rest. We will show Q = 0. Let P =P, ®---® P,, since ) have no composition factors in
common we have Hom(P, Q) = 0. We claim P is a two-sided ideal. Indeed, we just need to
show it is closed under right multiplication, If a € k[G], then right translation followed by
projection to @ is in Hom(P, @), hence 0 and therefore Pa C P. Similarly @ is a two-sided
ideal as well. But B is indecomposable, which gives a contradiction.

]

We are now going to explain how to associate characters to blocks. For any irreducible
ordinary character y;, we can associate a simple K[G]-module M;. If all the S; for which
d;; # 0 belong to the same block, then we just assign the module M; (and hence the character
xr1) to the block B where S; belongs to B and d;; # 0. To make this work, we need the
following lemma.

Lemma 3.1.3. If S; and S; are in different blocks, then d;; = 0.

Proof. We know that the projective indecomposables of k[G] are partitioned into blocks in a
way compatible with the partitioning of simple modules by the last proposition. So if S; is a
composition factor of P; then S; is not, so ¢;; = 0. But C' = DDT and 0 = Cij = Y Aridy;
with all the di; are non-negative, this implies d;; = 0. O

We now see if we order the characters in a way such that the characters correspond to
the same blocks are grouped together, then the Cartan matrix will be a matrix with block
matrices (not necessarily Jordan blocks) on the diagonal.

For example, in Example 2.5.20, we see there are |G,es| blocks and each of them has size
p"i. This is expected since k[C),] is commutative and is isomorphic to k[z]/(z" — 1). All
(left) ideals are automatically two-sided. Let |Giee| = ¢ = n/p;™. Since k has characteristic
pi, we have by Frobenius endomorphism that z" — 1 = (29 — 1)?"". But k is large, so
x% — 1 is separable and splits completely. Each ideal is generated by one element (but not
necessarily an integral domain). The blocks are exactly the same things as the projective
indecomposables, and they correspond to the ideal (x — w), where w is a root, and each
smaller ideal (r — w)® correspond to a smaller submodule with (z — w)P"™ is the simple
module correspond to the projective indecomposable/block.

In Example 2.5.23, we see that Fy(Ly(7)) has only two blocks.
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3.2 Central Character Theory

In this section we want to apply the theory we have developed to group theory. We will pick
up where we left at the end of the course ‘Group Representation Theory’ M3P12 ([New16])
and generalise Burnside’s Theorem and prove [Fenl5, Theorem 13.14].

As the title of the section suggests, we will consider Z := Z(k[G]). By Schur’s lemma, given
a simple K[G]-module M, Z acts by scalars. Therefore we have a K-algebra homomorphism
w: Z — K such that w(z) - m = w(z)m. This is called the (ordinary) central character of
M.

Recall that if Cy,...,C, are conjugacy classes of GG, then ¢; := deci g form a basis for Z.

Lemma 3.2.1. For g € C;, we have that w(c;) = %. Furthermore, it is algebraic.

Proof. Characters are invariant under conjugacy classes, hence ¢; has trace x(1)w(c¢;). On
the other hand, each g € C; has character x(g), but there are |C;| of them.

For a proof of the algebraic-ness, see [New16, Prop 4.7]. ]
Now we want to link to modular central characters. The idea is the same, since we showed it

is algebraic, it is in A, so we can define modulo m and this will give us the modular central
characters.

More precisely, let M be a simple K[G]-module, x is its character and w, is its central
character. Then @, := w, mod m is the central character attached to the block of d(M).
And by Proposition 3.1.1, this is well defined.

Remark 3.2.2. Note that Z = @Z(B;). By showing each Z(B;) is local, we can see it is
the unique k-algebra homomorphism which is non-trivial on exactly one block. So we can
add the condition of having the same central character to the list of equivalent conditions
in Proposition 3.1.1. This explains why central characters are ‘natural’. Although we don’t
really need this.

For completeness sake, let’s recall Burnside’s Theorem ([New16, Thm 4.4, Cor 4.3]).

Theorem 3.2.3. Let p be a prime number, and let d > 1 be an integer. Suppose G is a
finite group with a conjugacy class of size p¢. Then G is not simple.

Corollary 3.2.4. Let p, ¢ be prime numbers and let a,b € Z>( with a +b > 2. Suppose G
is a finite group with |G| = p%¢®. Then G is not simple.

Now we will work toward a stronger version of Burnside’s Theorem ([Fenl5, Theorem 13.14]):

Theorem 3.2.5. If G is a non-abelian simple group and |G| = p?¢®r for distinct primes
p,q,r, then if R is an r-Sylow we have R = Cent(R).

With a bit more work, we can get the following corollary (see [Bra68]):
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Corollary 3.2.6. If G is a non-abelian simple group, and |G| = 5p?¢® for distinct primes
p,q # 5, then G = As, Ag, or SO5(F3).

Let’s begin with some results on the principal block (recall the principal block is the block
contains the identity).

Proposition 3.2.7. Let GG be a non-abelian simple group and x an irreducible character of
G in the principal block. If x(1) = p*, then y = 1.

Proof. Similar to the proof of Theorem 3.2.3, we take g in the center of a p-Sylow subgroup
P € G. Then |Cy| = |G : Cent(g)| is a factor of |G : P|, which is coprime to p. Assume x
is not the trivial character. Since G is simple, by the proof of Theorem 3.2.3 we have that

x(g) = 0.

On the other hand, it is clear that if x, x" are in the same block, then wy, = w_;< So we have
for any conjugacy class C and any g € C,

Clx(g) _ ICIX'(9)

mod m.
x(1) X'(1)

Since the trivial rep is in the principal block, we take y’ = 1. Then we deduce that

C

Ch(9) = |G| mod m.

x(1)

This implies that x(1) = p* and |C| are coprime. Then |C| is not in the maximal ideal m, so
we have that % = 0, hence (g) # 0 and this is a contradiction. O

We will also need:

Lemma 3.2.8. If g is p-regular and h is not, then >z xi(g9)xi(h) = 0.
Proof.

> oxiloa(h) = Y diBi(g)xi(h)

xi€B Xi,B;€B

ﬁj eB

where the equalities follow from the theory of CDE triangle and g is regular. But by Propo-
sition 2.5.12 we have n;(h) = 0, hence the result.

]

Remark 3.2.9. Note this is a special case of the more general orthogonality relation called
Block Orthogonality (see [Fenlb, Theorem 13.8]).
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Now we are ready to prove Theorem 3.2.5.

Proof of Theorem 3.2.5. 1f Cent(R) > R then by counting, G has an element g of order
pir or ¢'r, where i > 0. WLOG, assume it is p’r. Let By be the principal block modulo p.
We have by the last lemma that 0= 3" 5 X(1)x(g9),s0 =1 =3 5 _; x(1)x(g). We see
that there is a x # 1 such that ¢ 1 x(1) and x(g) = 0 (otherwise will contradict the above
equation). Then by Proposition 3.2.7, we must have r|x(1). But then the r-defect of x is 0,
which means it comes from a projective F,[G]-module. But then x = np for some projective
indecomposable P, and by Proposition 2.5.12, we have x(g) = 0 as ¢ is not r-regular. And
this gives the contradiction.
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Afterword

We started with the module theoretic approach, but mainly focused on the character theoretic
approach. Some of the notions we introduced lend themselves well to the module theoretic
point of view.

For example, we introduced the notion of p-defect in Chapter 2.5.1, it turns out that we
can turn it into a definition of p-defected subgroup D C G of B by thinking of B as a
k|G x GJ-module. It has defect 0 when D is the trivial group (see [Alp86, Chap IV]). In
fact, the block B is semisimple as an algebra if and only if B has defect 0 (see [Alp86, The
5, p97]). Also note there exists a whole theory for when the defect subgroup is cyclic. We
can associate the simple modules of a block to a Brauer graph and it turns out if the defect
subgroup is cyclic, then the Brauer graph will be a tree (see [Alp86, Chap V]). Note this
applies to the special case when it has the trivial defect group.

We also did not touch on Green and Brauer correspondence, which links global structure
with local structure. Note that there also exist ring theoretic approaches, which can be found
in [Lan83]. And some homological approaches can be found in [Ben98a] and [Ben98b].
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