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RESEARCH STATEMENT

I am interested in representation theory and its interaction with geometry. In particular, I am
interested in algebraic D-modules and their applications. My work fuses techniques from (derived)
algebraic geometry, Poisson geometry and symplectic resolutions. It has implications for the general
theory of D-modules on singular varieties and for Poisson homology (resp. Hochschild homology) of
Poisson algebras (resp. their quantisations). The questions I research impact mathematical physics,
in particular, 3D mirror symmetry.

ParT I: D-MODULES

A D-module is a sheaf of modules over the sheaf Diff(X) of Grothendieck differential operators
on a ‘space’ X (complex manifold, scheme, stack etc). It was first introduced by Mikio Sato as an
algebraic way of encoding systems of differential equations, a field now known as algebraic analysis.
The foundations of D-module theory was laid down by Masaki Kashiwara in his master thesis and
independently by Joseph Bernstein. Methods of tackling D-modules include powerful tools such
as homological algebra and sheaf theory. D-modules and their applications are fundamental to
representation theory and mathematical physics. In particular, the theory of regular holonomic
D-modules and their solution complexes form a key part of the Riemann—Hilbert correspondence
which gives a sophisticated answer to Hilbert’s 21st problem. This answer has a close relationship
to perverse sheaves and intersection cohomology of stratified spaces. Moreover, in representation
theory, the Beilinson—Bernstein localization theorem relates D-modules on flag varieties G/B to
representations of the Lie algebra g attached to a reductive group G. This result opened totally
new perspectives, resolving questions such as the Kazhdan—Lusztig conjectures.

While on a smooth variety X, a D-module can be defined just as a module over Grothendieck’s
ring of differential operators Diff(X), the situation becomes complicated when X is singular. In
particular Diff(X) can be poorly behaved (e.g., not Noetherian) when X is not smooth. There are
alternative approaches available which coincide for smooth varieties but give a nicer category in
general. For example, Kashiwara defined D-modules on an (affine) variety X via a closed embed-
ding X — Y into a smooth variety Y. Grothendieck defined the notion of crystals, an infinitesimal
analogue of parallel transport. These two approaches are known to be equivalent and yield a natural
category of D-modules on any variety, which enjoys nice properties.

In my work [Yan21|, I correct the ring of differential operators, giving a new approach to D-
modules on singular spaces. Using a compact generator Dx from the crystal approach, I show that
the derived category of D-modules on X is equivalent to the category of DG-modules over a DG al-
gebra REnd(Dx). The zeroth cohomology, End(Dx), of this DG algebra is isomorphic to Diff(X).
Hence it can be viewed as a DG correction to Diff(X). In some cases, this DG algebra really is
(quasi-isomorphic to) the ordinary algebra Diff(X). This includes the cuspidal case considered in
[BZN04] in the sense that when X is cuspidal, this derived equivalence of D-modules is the derived
version of the abelian equivalence in [BZNO04]. It is an interesting question if the converse holds,
i.e., that REnd(Dy) = Diff(X) implies X is cuspidal. In any case, for most X, the DG correction
to Diff(X) is nontrivial.
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I considered many special cases where it is possible to compute the DG algebra and its action
on D-modules explicitly. In the case of a hypersurface X = {f = 0} C A", Ext*(Dx,Dx) is
concentrated in degree 0 and 1. So D-modules are equivalent to modules over the ordinary algebra
Diff(X) if and only if
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In particular, the vanishing holds for the cuspidal case, which seems difficult to prove directly.
When the variety is a curve C, by calculating Ext!(D¢, M), T have shown that the abelian sub-
category of regular holonomic D-modules with ‘completely non-trivial monodromy’ around each
non-cuspidal singularity over a curve maps to ordinary modules over Diff(C), i.e., they have no
higher cohomology. I expect the converse to hold for simple D-modules and proved this in some
cases. Here, ‘completely nontrivial monodromy’ means that, in the normalisation of C, all eigen-
values of monodromies about exceptional points are not equal to 1. For an isolated finite quotient
singularity X = V/G, I have shown that local systems correspond to ordinary Diff( X )-modules if
there is trivial monodromy about singularities. The converse holds for simple D-modules, or more
generally, intersection cohomology D-modules.

=0.

In the future, I would like to explore the A, structure on Ext®*(Dx, Dx), in particular, I would
like to investigate under what condition the A, structure on Ext®*(Dx, Dx) is formal.
This condition would allow me to study D-modules as modules over a graded (rather that DG) ring.

Parr II: HOCHSCHILD-DE RHAM HOMOLOGY

In [ES09], Etingof and Schedler has developed a new theory of Poisson homology called Poisson—
de Rham homology combining ideas from Poisson geometry and D-modules. It is defined as the
(—2)-th cohomology of the derived D-module-theoretic pushforward to a point of a natural D-
module M (X) on X, which captures the Hamiltonian flow induced by the Poisson structure. In

other words, 4
HPPR(X):= H 'r,M(X),

where 7 : X — Spec(C). They have shown that HPPF(X) = HP,(X). Moreover, they have
shown that in nice situations such as when X has finitely many symplectic leaves, H PPE(X) is
finite dimensional, hence H Py(X) is finite dimensional. This includes finite quotient singularities
(originally proved in [BEGO02] by Berest, Etingof and Ginzburg, answered a question of [JF03| of
Alev and Farkas).

Going from classical mechanics to quantum mechanics, it is natural to consider deformation
quantisations of Poisson algebras, and these quantisations naturally have associated Hochschild
homologies. Using ideas from [ES09], I used D-modules to define a new version of Hochschild
homology called Hochschild-de Rham homology and shown that HHPF(X) = HHy(X). It is
defined as

HHPR(X) := H in, Mu(X),
where Mp(X) is the a natural “quantised version” of M (X). I have shown that Hochschild—de
Rham homology behaves nicely in the situation of symplectic resolutions. In particular, I have

shown if X has a symplectic resolution p : X — X, and under the assumption that the natural
quantisation D-module M (X) is isomorphic to p,§2¢, the D-module-theoretic pushforward of the
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canonical sheaf on the resolution, then HHP(A) is independent of A, where A is a quantisation

of O(X) and HHy(A) = H*P(X) (generalising Nest-Tsygan theorem).

While the assumption that M (X) = p,Q ¢ has been shown to be false in a particular case of a
quiver variety with loops in [Tsv19]|, one can consider a “quantised version”

My(X)[7] = p.Qg (h), (t)

where p, now is the D-module-theoretic pushforward for a formal family. And this now has a
chance to hold for all symplectic resolutions. The goal is then to prove () and then deduce the
classical case M(X) = p,Q¢ for quiver varieties without loops. Here, (Nakajima’s) quiver va-
rieties are moduli spaces of representations of quivers (i.e., directed graphs). These are notable
for allowing geometrical constructions of the universal enveloping algebra of Kac-Moody algebras
acting on the cohomology of quiver varieties and related spaces. Moreover, in [PS17a], it has been
proven that, if for every symplectic leaf S of X, a formal slice Xg to leaf at a point s € S satisfies
HPy(Xg) & HYimXs(p=1(s)), then M(X) = p, Q5 is true. I would like to prove a similar
statement in the Hochschild case and use it to prove M;(X)[h™!] = p, Q¢ ((h).

Kontsevich and others have proved that every smooth affine Poisson variety has a (formal) defor-
mation quantisation, called the Kontsevich quantisation. In fact, there is an L., quasi-isomorphism,

Tpoly (X) = Dpoly (X) )

where Tpopy = /\:Q(X) Vect(X)[1] is the dgla of (shifted) polyvector fields on X, and D,y =
C*(O(X))[1] is the dgla of (shifted) Hochschild cochains on X, where the chain maps are restricted
to those are differential operators. By taking the the Maurer Cartan twist of this L., quasi-
isomorphism with respect to the MC element corresponding to the (formal) Poisson structure, it
can be shown that HH,;(A) & HP;(X) where A is the Kontsevich quantisation. I would like to
prove the de Rham version is also true: HHPT(A) =~ HPPE(X).

In [PS17b], Pym and Schedler have found a complex of D-modules MM x that governs the ordinary
Poisson cohomology of X. Moreover, the zeroth cohomology of the complex My is a quotient of the
canonical D-module Mx. This links the ordinary Poisson cohomology with the Poisson-de Rham
homology. I would like to generalise the above construction to the Hochschild-de Rham
setting and define Hochschild-de Rham cohomology. I would like to apply Hochschild-
de Rham (co)homology to study deformation theory and ordinary Hochschild (co)homology of
symplectic singularities and their quantisations (e.g., quantisations of Sym Y, where Y is a affine
symplectic surface, which would be a global analogue of symplectic reflection algebras).

PART IIT: QUANTUM TOPOLOGY

As an application of the Hochschild-de Rham theory, in the upcoming joint work with Sam Gun-
ningham, David Jordan and Monica Vazirani, we derive a closed formula for the dimension of the
Skein module of the 3-torus SK gy, () (7). This uses the fact that the dimension of the skein algebra
of the 2-torus is equal to the 0-th Hochschild homology of an algebra that is a deformation quanti-
sation of the character variety which admits a symplecic resolution. This symplectic resolution is a
version of a Hilbert scheme that turns out to be a finite covering of the usual Hilbert scheme of the
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2-torus. Generalising the work of Nakajima and Grojnowski, it becomes a combinatorial task of
calculating the top cohomology of this space. And finally by the generalised Nest-Tsygan theorem,
since it is a symplectic resolution, it does not matter what the quantisation actually is, and H Hy
is always the top de Rham cohomology, and hence we obtain the dimension of

dim SKSL(n) (T) =Px* Jg(n),

where P is the number of partitions function, Js is the 3rd Jordan function and * is the Dirichlet con-
volution. This generalise the result of Carrega [Car17]| and Gilmer [Gil16] for the dim SKgy,2)(T) =
9 case. I would like to generalise this approach to ¥, x S! and possibly to (-1)-shifted
symplectic structure settings.

Part IV: CouLOMB BRANCH

Let G be a complex reductive group and M a symplectic representation. Often, we will start
with any representation V' and make it symplectic by setting M = T*V with the usual symplec-
tic form. Attached to this datum is a ‘supersymmetric theory’, and its Higgs and Coulomb branches.

The Coulomb branch M was defined by Nakajima, Braverman and Finkelberg in [BFN19]. It
is defined as the spectrum of a ring constructed as a convolution algebra in the homology of the
affine Grassmannian,

Mc = SpeC(H.G(O) (RG,T*V)a *),

where Reg -y is moduli space of triples (P, ¢,s), where P is a G-bundle on the formal disk
D = SpecC|[[7]], ¢ is a trivialization of P over the punctured disk D* = SpecC((z)) and s is
a section of the associated vector bundle P xg T*V such that it is sent to a regular section of a
trivial bundle under ¢.

The Poisson structure of the Coulomb branch comes from its natural non-commutative deforma-
tion (H.G(O)X'(C (Ra,r+v),*). In the case of (framed) ADE quivers, it has been shown that M¢ is
isomorphic to generalised affine grassmannian slices W:‘ And they admit symplectic resolutions if
A is a sum of minuscule coweights, which is automatic if the quiver is type A. Moreover, in [Web19],
Webster has shown that My (G, T*V) and Mc(G,T*V) satisfy a symplectic duality property. In
particular, there is a Koszul duality between generalizations of category O over quantisations of

these varieties, if My is a Nakajima quiver variety or smooth hypertoric variety.

I would like to study D-modules on Coulomb branches, especially in the ADE quiver
case. In particular, I want study the natural D-modules M (X) and M} (X) and therefore study the
Poisson(-de Rham) homology and Hochschild(-de Rham) homology of M¢ and its quantisation. I
would like to apply the techniques from the previous part in this setting, and tackle these questions
I asked in the previous part in this special case. I would like to investigate how symplectic duality
exchanges both sides on the level of D-modules.

All my publications are posted on arXiv in preprint form, contributing to the culture of open
and free access to science.
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