Seidel — Thomas
Scidel - Thomas Braid group actions on derived Categories of Coherent deaves,
cheaves,
Goal: Construct Braid group actions on Db(X) for some
Goal: Construct Braid group actions on D(X) for some Varieties X (for example Colabi-Yau) This outlon is faithful for dim X Z2. i.e., By Auteq (D(X)) injective. Toward braid group actions on peruse cheaps on menstern manifolds.
This action is faithful for dim X ZZ. He is currently a student of
ie. By
ما من المنظم
Motivation: How did they come up with this? . Homological mirror symmetry. — we will spend quite Some time on this. . Although, much of the power don't use HMS and handle Db(x) directly.
Motivation, you gid they come up with this?
- Monologial Millor Symmetry, — We will spend quite
The fire on this
- Although, work of the proofs don't use HMS and
handle Db(x) directly.
<u>Examples:</u> - Resolutions of ADE singularities
<u> </u>
• 9 / No knis on Outres Vorieties
Nakajina quiver Vovieties
Nakajina quiver vovieties (talk on this later)
· many more examples in the paper.
$\frac{1}{1} \left(\frac{1}{1} + 1$
Addendum: Anteq ($b^b(x)$) alway contains $A(x) = (Aut(x) \times Pic(x)) \times Z$
when Wx or Wx is and , then Anteq (DCx) = A(x).
Fano

What is HMS?
MS originated from String theory, which I don't understand
MS originated from String theory, which I don't understand It says something like: Say more, 4+6=10, 6 symp or comp, don't effect, not detectibe, house expect agreedence.
There are pairs (X, M) of two spaces, such that
while X. M have very different geometries, but are regnirolone"
There are pairs (X, M) of two spaces, such that, while X, M have very different geometries, but are "eqmiralane" when employed as "extra dimensions of string theory".
More mathematically, kontaevich formalited HMS as: (X, M) , $X = Complex$ algoritety.
(X, M), X = Complex algoriety,
M = real Symp manifeld,
M = real Symp manifold, Both Compact Kähler Calabi—Yau Lie. 1 ^{top} 7 ^t M ≅ On)
$= \frac{1}{(1 + \frac{1}{2})^{2}} $
Such that $D^b(x) \cong D^b(x) \cong D^b(x)$
an equivalence of triangulated Categories.
Say more: $5/2$
Some remarks: . D'(X) is desired restegarly of Chernet Choever on K. May my wording week't great there, this is saying YX, I(M, F). A conversely Y (M, B), 3 X St. (X) is true.
I also I I (II a) I V of (V) is the
· though I think not I! (as far as I know)
· (x) carries a lot of information, has a ton of applications in
enumeredine geometry. But for our purpose, we have
Auteq D'(X) = Auteq D'Fuk (M, B) (**)
Where Anteq = triangulated equavilences of tringulated covergoies, (I don't like the word exact)

· (*) is prove for:
· (X) is prove for: • When the paper was written, only for
X = Elliptic curve, M = Toras
Now, this has been generalised to:
· Surfaces — related to gentle algebras
· Toric manifolds CI think)
· fibrations of above (I think) — using tilting abjects
· (X) is believed to hold beyond Calabi-Yan case,
this is related to London - ginzburg (I think)
. De Fuk (M, B) can be attached to any compact symplectic manifold
This is related to London - Ginzburg (I think) - Bb Fuk (M, B) can be attached to any compare symplectic manifold with C, UM) = D (() = C, (14 TM) => 0 = C, (M)) say more infinish unper Fuk cat.
· Do Fuk (M, B), unlike D (X), in general is not a
defined at of an arbolism cot
it contains objects Lagrangian submanifelds L
with a unitary line bundle U if TI. (M) \$0) (With 21 - Shifts L[i], it Z.)
- Morphisms defined by ! Hom (L, L,) = HF (L, L2) OD (
This is a graded vector space with the usual;
HF** (L,,L,) = HF*(L, L) = HF*(L,, L,J)
· Can compose morphisms.
· Because it is trangulated, it has more objects than LII)
thoitis generated by them.

How does HMS help us?
Recall (**) Auteq Db(X) = Auteq DbFuk (M, B).
Clearly, if we can handle (subgps of) the RHS, we can find something insightful about the LHS,
(learly, Symp(M, b), the group of sympletic automorphism acts on M.
Hence Symp(M, B) -> Auter Ob Firk (M, B). But isotopic automorphisms give the same action, so
But isotopic automorphisms give the same aftian, so To (Symp (M, β)) — Auter Ob Firk (M, β).
It turns out there is a notion of graded version of symplectic automorphisms in DbFuk, denoted Symp ^{gr} (M,p), which is a central extension of symp by 2.
TENE
To (Sympor(M, B))
The Z in Symposing with (x) just corresponds to shifts in Db(x). Hence, composing with (x)
$T_{lo}(Sym_{p}(M,\beta)) \longrightarrow Anteq(D^{b}(x))/translations$ (†)
/ [o-a

What can we say about the LHS of (+)?
let's look at the example:
$M = T^2$
$M = T^2$
From previous talks, we know that the Is Delin twist along 5' is a symplectic automorphism, some for 08'.
Ts' aces on homogy H*(M);
$(T_{c'})_{x} = \{ x - ([s'] \cdot x)[s'] \text{if } \dim x = 1$
Here x is a cycle [5'] is the furtamental class (i.e. image of $H_1(5') \xrightarrow{i_0} H_1(T^2)$)
(i.e. image of $H_1(S') \xrightarrow{L_0} H_1(T')$)
· is the intersection pairing
in particular, $(T_{S'})_*[S'] = [S'] - [S']$
Reall that Is' and Is' satisfy the broad relation of Bz.
Therefore B3 -> Symp(T2)

Now, we can generalise from T2 to any symp manifold.
Now, we can generalise from T2 to any symp manifold. the 5' and 5' to so call Lagraingian Spheres S; The S; will have generalised Pehn twises Ts;
The S; will have generalised Pehn twises Zs;
Def: an (Am)-configuration of long sphees S1, Sm C(M, B)
Def: an (A_m) -configuration of Long spheres $S_1, \ldots, S_m \subset (M, \beta)$ is such that $ S_i \cap S_j = \{1, j \in I\}$
[S; [15]] = []
10 11-1152.
Then 7. The sandy the heard policy land R.
Then Is, Ism sortisfy the broid relations for Bout. (This is proved for surfaces at least, I don't know the general
result).
Now composed with (†), we have Bm+1 Dehn twist 7. (Symp ³ (M,β)) action Auteq DbFuk(M,β)
Bm+1 Dehn twig π. (Symp (M, β)) action > Auteg DeFuk (M, β)
Hus
Anteq Db (x)
quatient
Auteq Db(x)/translation
Now the question is this is a notivertian and me wount to
prove something. Therefore we need to take a guess of the
Nows the question is, this is a notivation, and ne wount to prove something. Therefore we need to take a guess of the image, then prove thing directly using alg goo I have logical alg.

What should be the image?
Observations: If 5 is a Lag sphere, they
Hombs (5,5) = HF*(5,5) & 4 = H*(5,4)
If & corresponds to S in HMS,
then Handbery (E, E) = H*(S, a)
colonology of a sphere, therefore whatever & is, we
should call it spherical object.
· There is known to be a long exact sequence;
$HF(I_s(L_o), L_i) \longrightarrow HF(L_o, L_i)$
There is known to be a long exact sequence; HF(Is(Lo), L,) -> HF(Lo, L) (proved by seidel)
HFCS, 4) @HFCLO,5),
which is seemed to be induced by the exact triangle:
Ts(Lo) (Honl-,4) is
(a) Contravoliunt
HF(s, L,) @ 5
If T_s corresponds to Φ_{ε} in $D^b(x)$, then we should
have:
Han*(E,F) & E

This is the defining property of Fourier—Mukai transform (FMT) along the element Cone (EV × E → O2) E Db(x x X) We can check: FMT (F) det (T)* (T,*F& COME) = $(\pi_1)_*$ (one (π^*F) (EVXE) $\longrightarrow \pi^*F \otimes \mathcal{O}_{\Delta}$) (& is derived, hence resp triangles) = (R2)x ((one (T, F & T, E & T, E & T, F & C2) (converting outer &) = (π.)* ((one (π, Hom(E, F) & π, E -> π, F & Q) (eng to sec...) $(R_2)_{\star}$ is triangulated honce resp triangles = (one (Hom (E, F) & E -> F) (Axiom of triangulated cat) (This is not good enough, because I am using local freeness of E)

But this is serving a justification of why Dehn twists

Corresponds to FMTs under HMS) We will see examples when E is locally free. We now abuse notation, we write Te to FMT (one (EVER = 0)) · It is known that (TE)* (y) = 9- <[E] y>[E] for y ∈ Ko(X), <-,-> the Euler pairing

Now compare this with:
Is are on homby Hx (M);
Here x is a cycle $[S]$ is the fundamental class
(ie image of H (5') > H (7'))
is the intersection pairing in particular, $(T_{S'})_*[S'] = [S'] - [S']$
This is enough evidence, and motivate the following definition:
definition:
(X on alg variety)
Def: & E Db (x.) is sphereica (if
· Hom (E, E) ≈ H (5°)
C & 111 C C [More on this later, Obvious don't need this]
if X is Calabi-Yan. This is related to Serre duality.
· can (An) - config is E,, Em s.t.
$\dim_{\mathcal{C}} \operatorname{Hom}_{\mathcal{D}(x)}^{*}(\mathcal{E}_{i}, \mathcal{E}_{j}) = \begin{cases} 1 & i-j \geq 1 \\ 0 & i-j \geq 2 \end{cases}$
Theorem(SI). TE is an exact self equivalence
<u> </u>
· If \mathcal{E}_{1} , \mathcal{E}_{m} is an \mathcal{A}_{m} - \mathcal{C}_{n} fig.
· If Ei
· if dim X = 2, this is faithful.

5T proved this without using HMS
Therefore conjecture:
Bonti Dohn twist Auteg D'Fuk (M, B) ST Hins Auteg D'(X)
Auteg D ⁶ (X)
If HMS is true, then for dimX = 2, the Dehn twist action of But should also be faithful.
Now, we are going to forget HMS for some time, & talk about some aspects of the proofs.
There are technical subtleties such as replace $F \in D^b(x)$, by a complex of injectives, which technically doesn't live in $D^b(x)$ anymore but we are going to ignore issues like this. (Can be resolved by doing more homo abj
We have defined $\Phi_{\mathcal{E}}(F) := \text{cone}(\text{hom}(\mathcal{E}, F) \otimes \mathcal{E} \longrightarrow F)$. The claim is $\Phi_{\mathcal{E}}$ is invertible, The andidate of inverse is given by $\Phi_{\mathcal{E}}(F) := \text{cone}(F \longrightarrow \text{Linhom}(\text{hom}(F, \mathcal{E}), \mathcal{E}))$
The condidate of inverse is given by $\Phi_{\varepsilon}(F) := \text{Cone}(F \longrightarrow \text{Linham}(\text{ham}(F, \varepsilon), \varepsilon))$
If · Homi(E, E) = /k if i=0, k
0 Otherwise

· Hom (F, E) x Hom -j(E, F) -> Hom (E, E) = k (x)
is non-degenerate

Then \$ = \$ are inverses

Note here, we are not using the four we are notking in $D^b(x)$ any transposited category is fine.

The proof uses a lot of tensor-hom adjuction, and homological algebra.

The second (x) is equivalent to $E \otimes W_x \cong E$ if he work in $D^b(x)$ and x is smooth projective. This is pretty much a restatement of Some doubity (aly go version of poincare doubity)

if X is quoi-projective, then need to the dualising shoaf P'Ope rather than Wx, and this becomes a restatement of Grothendieck duality.

About braid relations

I think everything fellows from the key lemma:

If Ez is (n-)spherecial, then

(+x) I E (E1) FE = I E I E1, the def, and general abstract non-souse.

=> É, 3 (E,) $\Rightarrow \quad \stackrel{f}{\underline{f}}_{E_i} \stackrel{?}{=} \stackrel{\overline{f}}{\underline{f}}_{E_i}(E_i)$ \Rightarrow by (x*), $f_{E_1}f_{E_2} \cong f_{E_1}f_{E_2}$

The other relation can be proved similarly

Now, the authors of the paper said they didn't bother to check is the action is strong (i.e. in Deligne's Sense) or not.

I believe it is, but I didn't bether to check either. This requires a be of diagram chaing.

Example: if x is strict Calabi-Yau, i.e., $w_{\infty} = \mathcal{O}_{\infty}$
& Hi(x, Ox) = 0 oxian, then any line bundle is
Example: if x is Strict Calabi-Yau, i.e., $w_x = O_x$, $x = O_x$, $x = O_x$, $x = O_x$, $x = O_x$, then any line bundle is a spherical abject, just because $x = 0$.
· If (CX, local cylete intersection in Smooth proj, with the
pormal shoot $V = (J_Y/J_{Y}^2)$. Assume that $W_{x y}$ is trivial
• If $Y \subset X$, local cylete intersection in smooth proj, with the pormal shoot $V = (J_Y/J_{Y^2})^{\prime}$. Assume that $W_{X} _{Y}$ is trivial $W_{X} _{Y}$ is trivial $W_{X} _{Y}$. Then $U_Y \in D^{\delta}(X)$
is a spherical object,
Pt: Koszul resolution \Rightarrow Exti(i $_{k}O_{\gamma}$, i $_{k}O_{\gamma}$) \cong i $_{k}$ (Λ^{j}) Spectral sequence gives Ext(i $_{k}O_{\gamma}$, i $_{k}O_{\gamma}$) = 0 0< r<1 Duality gives the rest.
Spectral sequence gives Ext(inOy, inOy) = 0 0< r<1
Duality gives the rest.
· Application of previous point:
Let X be a surface, suppse C is a smooth rational Carle C s.t. C.C = -2 (self-intersection), then C setisfies the Goditions of the previous point.
Curle (st (() (coll-interact) that (sticker the
Cultil of I moving Adjust
C.C) is some PDCC \ A DDCC \ - DTC
$C \cdot C = -2$ is saying $PD(C) \land PD(C) = -2[x]$ PD is the the Poincare dual of $H(C) \longrightarrow H_*(x)$
PD is the pomore dual of ACC) -> HxCX)
Fact: C.C = dog (V) the deg of normal sheaf
Explain in words here so deg (2) = -2
$\Rightarrow H(C, M) = 0$
Adjunction formula => Wx/c = Oc.

dif C1,, Cm of such curves
& C; () C; = \$\phi for 1i-j \rightarrow 2 (=> Hom (Q_{\ell_i}, Q_{\ell_i}) = 0)
then (Oc, , Ocan) is an An-config
. What is a concrete example of the above?
Where do we find these -2 curves?
Example: Let G = Cm+1 = 2/ C SL2(C)
acting on A^2 , then $x = A^2/G = Spec(CIX, y)^G)$.
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
This is singular, with Sing (x) = image of 0, the fixed pt of the action
10 V 1 the llower of X get the sine of
Let X be the bourp of X at the Sing Pt.
\overline{X} A^2 $N=2$:
N=2 :
It is well known that P'(sing) is a union of P's with intersection grouph axc, carcs Dynkin grouph of type Am
with interception graph and contract on the most of type
Dinkin glafin of the
pi night pi Am
It is not hard to believe that $C_i \cdot C_j = -(C_{antan} \text{ matrix})_{ij}$ (artan matrix for A_2 : $\begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$ this gives the Condition.

$S_{o}(O_{c_{i}})$ form an (A_{m}) -config
Moreover, it is known that $D_G(A^2) \supseteq D^b(\widetilde{X})$ (*) If we take $\mathcal{E}_i = \mathcal{O}_O \otimes V_i \in Ch_G(X)$, where V_i are the
If we take E: = 0,00 V; E (dy (x), where V: are the
one-din reps of Contl
then it is easy to see that
Hombeck) (Ei, Ej) = (1'R & Vi & Vj)
(koszul res for i. O.), where R= & Vi, the reg rep.
This also satisfies the anditions
This also satisfies the conditions. And in fact $\mathcal{E}_i \longrightarrow \mathcal{O}_{C_i}$ under $(+)$