Nakajima's guiver varieties & kac-Moody actions
With a View toward/from Symplectic resolution theory
Main ref: Lectures on Nakajima's quiver varieties by Victor Ginzburg.
https://arxiv.org/pdf/0905.0686.pdf
From Wei's talk, there were 3 things
From Wei's talk, there were 3 things. 1) View things as special cases of Nortajina's quive, varieties, then apply Nakajina's results.
2) Categorify (CKL)
3) Do goonetry? (C)
In this talk, we focus on 1), with emphasis on the symp resolution point of view.
More precisely no are going to define general Natajina's quiver varieties and study their (symplectic) geometric proporties.

· Take "Cotangent space", i.e., double the arrow

Runk: A few ways of thinking about framing:

- 1) Nakajina was a differential geometer at one point, Studied Gauge theory >> ADHM equation: [x,y] + ij = 0 this + ij term only appears when you have frawing.
- 2) Thinking quiver varieties as moduli spaces, from is like "marked points" or "bundles with a choice of trivialisation".

3) (pratical reason), if no framing, the variety is 0 most of the time.

Nakajina quiver variety. for every vertice $i \in I$, & franky $(i \in Q)$, chose a number N_{20} , $i \in V$. $V \in \mathbb{N}^{I}$. (Think, V, W as Hilbert pages?) the space of all reps of the quiver is:

Rep (Q, V, W):= ⊕ Hom (V, V,) ⊕ ⊕ Hom (V, W;)

j = i

(F) (Hom/W:, V;)

where dim V; = v;
dim W; = w;

There is α GL(V) = Θ GL(V_i) action on it, iEI $9 \cdot (x, y, i, j) = (9 \times 9^{\dagger}, 9 y 9^{\dagger}, i 9^{\dagger}, 9 j)$

There is 6-equivarient moment map

Mi Rep (QO, L, w) > 9, 2 g

(x,y,i,j) ~> Z[x,y]+ji (ADHM)

So given
$$\lambda \in Z(O_{V})$$
, $O: GL(V) \rightarrow C^{\times}$

Def: $M_{\lambda,o}(Q, \underline{v}, \underline{w}) := \mu^{-1}(\lambda) // GL(V)$

We nosely ansider the case $\lambda = 0$.

King's Stability:

(x, y, i, j) $\in M^{2}(\lambda)$ is Θ -semistable iff. $\forall S_{i} \subseteq V_{i}$ which is stable under the ways $\times \& y$, we have $S_{i} \subseteq \ker j$. $\forall i \in I \Rightarrow \Theta \cdot \dim_{I} S \subseteq O$. $S_{i} \supseteq V_{i} \subseteq I \Rightarrow O$.

Example: S: D Image I, V: EI => O. dim_S & O. dim_V

Frample: V, (a >V, > -> > V,)

sen; Stable means that $X_i \notin j$ are injections $\longrightarrow M_{0,0} = T^* FL(\Gamma, C^n)$

Then any pt is Θ -semiotable.

What is $M_{0,0}$? (some kinds of hispotent orbit closure...) $\Theta = \Theta = \{-1, ..., -1\}$ Senistable means that $Y: Q \mid \text{ are surjections}$ $\longrightarrow M_{0,\Theta} = T F_{1}(r, c^{1})$ but now "flogs" are $c^{1} \rightarrow c^{1} \rightarrow c^{1}$... $M_{0,\Theta}$

 $m_{o,o}$

Where is the symp alg geo?

The claim is that $M_{0,0} \rightarrow M_{0,0}$ is an example of a symplectic singularity, & in many cases, a symplectic resolution.

Det: Let X be affire normal Poisson variety.

The $X \to X$ is a symplectic resolution if X is smooth symplectic St. $X \to X$ as a poisson algebra, and a resolution of singularities,

Quote: Symplectic resolutions are the Lie alophias of the 21st Century — Okounkov.

Properties:

- 1) Sewismall: $dim(X \times X) = dim X$ Therefore $dim of illed Components <math>\leq dim X$
- 2) X is a union of finitely many symplectic leaves X = LIXa, each Xx is locally closed smooth
- 3) In the case of a conical symplectic resolution (i.e., that there are C^{x} actions on \widehat{X} and X, such that π is equivarient, and contracts X to a point of then $\pi'(0)$ is a honotopy retreat of \widehat{X} , and $H'(\widehat{X},C) \cong H'(\overline{T}(0),C)$
- 4) More generally, Tit (any point) is isotropic (in the sense of symplestic geo)

When is $M_{\lambda,\Theta}(v,w) \to M_{\lambda,O}$ a symplectic resolution? Answer: (Almost always) when (x,Θ) is v-regular;

$(\lambda, \theta) \in \mathbb{C}^{\mathbf{I}} \times \mathbb{Z}^{\mathbf{I}} \subseteq \mathbb{C}^{\mathbf{I}} \times \mathbb{R}^{\mathbf{I}} \cong \mathbb{R}^{\mathbf{I}} \times \mathbb{R}^{\mathbf{I}} \times \mathbb{R}^{\mathbf{I}}$ $\cong \mathbb{R}^{3} \otimes \mathbb{R}^{\mathbf{I}}$

Let R= [a G Z 1/0] | CQ V. V & 2 HIGI

This is the set of roots, When Q:5 Dynkin or affine Dynkin, this coincides with the usual roots.

CQ is the cartan matrix, $C_Q := 2I - A_Q$, A_Q is the adjacency matrix.

Back to the example, we had

$$C_{\alpha} = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

and R'= { t(e;-e;)}

for $\alpha \in \mathbb{R}^{I}$, write $\alpha^{\perp} := \{\lambda \in \mathbb{R}^{I} \mid \lambda : \alpha = 0\}$ (λ, θ) is ν -regular if:

(2,6) E (12,0 12,1) / (12,4 12,4) / (2,6) E (12,0 12,1) / (2,6) | (2,6

if. $(\lambda, \theta) = (0, \theta^{\dagger})$, which is $e_{1} \otimes 0 \otimes e_{2} \otimes 0 \otimes e_{3} \otimes (\frac{1}{2})$ in $\mathbb{R}^{3} \otimes \mathbb{R}^{1}$ (\frac{1}{2}\). \text{ \text{\text{and}}} \((0, \text{\text{\text{o}}})\) is \text{\text{\text{\text{eqular}}} for all \text{\text{V}}.

So $M_{0,\theta^{\dagger}}(v,w) \longrightarrow M_{0,0}$ is a symplectic resolution. (When $\lambda=0$), the Weyl group $W(=S_n)$ acts on θ'_{5} . $\ell M_{0,\theta_{1}} \cong M_{0,\theta_{2}}$ if θ_{1},θ_{2} in the same chamber.

So, when we were in (type A_1)

there were 2 chambers $\theta^{+}=1$, $\theta^{-}=-1$ in $\theta^{-}=-1$ there are $(H \cap N)!$ chambers

There is a C^* action on the cotangent directin: $t \cdot (x, y, i, j) = (x, ty, i, tj)$ I the map $M_{o, o} \rightarrow M_{o, o}$ is $C^* - equivarient$.

The point is that $T^1(M_{o, o})$ is a lagrangian subvariety.

and in the case when Q how no oriented cycles, $m_{o,o} = |o|$. So $\pi^{-1}(o)$ is a Lagrangian in the guiver case.

BM homology

There isn't a notion of fundametal class for non-conpact nanifolds in usual homology theory, but there is for BM homology.

$$M_{1} \times M_{2} \times M_{3}$$

$$M_{1} \times M_{3}$$

$$U_{1} \times M_{3}$$

$$U_{2} \times M_{3} = \int_{\mathbb{R}^{3}} \left(\int_{\mathbb{R}^{3}} z_{n} \cap \int_{\mathbb{R}^{3}} z_{n} \right) d^{2} d^{2}$$

*: $H_{i}(Z_{12}) \times H_{j}(Z_{23}) \longrightarrow H_{i+j-dim}M_{2}(Z_{12} \circ Z_{23})$ $C_{12} \longrightarrow P_{i3} \times ((C_{12} \boxtimes [M_{3}]) \cap (C_{23} \boxtimes M_{1}))$

Now set $M_i = M$, $L \ge = M \times_Y M$ for $\bar{\tau}: M \to Y$ proposing This forms on adjution $H_{\bullet}(2)$

pick $y \in Y$, $M_y = \bar{\chi}^1(y)$ Set $M_1 : M_2 = M$, $M_3 = pt$ $Z_{12} = Z_3$, $Z_{23} = M_y$, $Z_{12} \circ Z_{23} = M_y$ \longrightarrow $H.(z) \hookrightarrow H.(M_y)$

Now back to the quiver case. let m(w) = [mo, o+ (v, w) $m_{o}(w) = \bigcup_{v} m_{o,o}(v,w)$ $\geq (w) = \bigcup_{V,V'} M_{0,\theta^{\dagger}}(V,w) \times M_{0,0}(V+V',w)$ (in other words, $2(w) = M(w) \times M(w)$) Let Hw = Htp (2(w)) Let $\pi'_{v,w}(o)$, be the Lagrangian $M_{o,ol}(v,w)$ $L_{w} = H_{top} \left(\coprod_{v} \mathcal{Z}_{v,w}^{\dagger}(o) \right)$ Using top as there is a shift in (tx), and semisual property makes sure we stay in top deg. And Lagragian also has the right (I think)

~ Hw CLw

Theorem [Na]: There is an algebra map $f: U(g_n) \longrightarrow H_{w_n}$ and Lw is a simple integrable ga-module with highest weight $Z w_i \cdot W_i$ (W_i fordametal weight) When Q is type A, this was first discovered by Ginzburg, Lagrangam construction of the evoloping algebra U(sh) Define $B_k^{(r)}(v,w) = \{(v',v'')\} V'' \in \text{Rep}(\bar{Q}, v+re_k,w),$ st. $Im(i_k: W_k \rightarrow V''_k) \subset V'$ BL (V, W) is a streducible empired in 2 (V, V+1Ck, W) Define $E_k = \sum_{i} \left[B_k^{(r)}(v, w) \right]$ let $\triangle(v, w)$ be the diagnal in $M(v, w) \times M_{0,6}(v, w)$ Then $E_k[\Delta(v,w)] = [\Delta(v-e^k,w)] E_k$ Appearably this is easy to check.