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Abstract

In the first part of the thesis, we study the category of D-modules on a (singular)
variety. We show for an affine variety X, the derived category of quasi-coherent
D-modules is equivalent to the category of DG modules over an explicit DG algebra,
whose zeroth cohomology is the ring of Grothendieck differential operators Diff(X).
When the variety is cuspidal, we show that this is just the usual ring Diff(X), and the
equivalence is the abelian equivalence constructed by Ben-Zvi and Nevins. We com-
pute the cohomology algebra and its natural modules in the hypersurface, curve and
isolated quotient singularity cases. We identify cases where a D-module is realised
as an ordinary module (in degree 0) over Diff(X) and where it is not.

In the second part, we define an analogue for Hochschild homology of a construc-
tion of Etingof–Schedler which enhances the (zeroth) Poisson homology to a local
version, defined using a specific D-module M(X). This uses another D-module
Mℏ(X) and yields a new version of Hochschild homology with desirable features,
called Hochschild–de Rham homology. In general, the Hochschild–de Rham homol-
ogy agrees with the ordinary Hochschild homology in degree 0 when X is affine. We
study in detail the case of certain symplectic resolutions and show that Poisson-de
Rham homology and the Hochschild–de Rham homology agree with the de Rham
cohomology of the symplectic resolution. We show that if X has finitely many sym-
plectic leaves, then Mℏ(X) is in a sense holonomic and hence deduce a finite gener-
ation result about Hochschild–de Rham homology. Finally, in the smooth setting,
we conjecture that the Hochschild–de Rham homology of the canonical Kontsevich
quantisation of the Poisson structure is isomorphic to the Poisson-de Rham homology
of X.

In the third part, we apply the results of the second part to skein theory of tori.
We find an explicit symplectic resolution Hilb0(T 2) of the SLN -character variety
of the 2-torus T 2, which will be a version of a Hilbert scheme of T 2. We show
that Hilb0(T 2) × T 2 is a CN × CN covering of Hilb(T 2) and hence compute its de
Rham cohomology and the Hochschild–de Rham homology of quantisations of it.
The Skein module is a quantisation of the character variety, and we deduce that
dimSkSLN

(T 3) = P ⋆ J3(N), where P is the number of partitions function, J3 is the
third Jordan function and ⋆ is Dirichlet convolution.
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Chapter 1

Introduction

1.1 D-modules on singular varieties

Suppose X is a smooth complex affine variety. Then D-modules on X are defined
to be modules over the ring of Grothendieck differential operators Diff(X) which
behaves nicely. It is well known that Diff(X) is Noetherian in this case. If X is not
affine but still smooth, we can sheafify this construction to obtain a sheaf DiffX , and
define the D-modules as the sheaves of modules over this sheaf of rings.

For smooth varieties, leads to a theory with many desirable properties. However, for
singular varieties many problems can occur. The fundamental issue is that the ring
of differential operators can be very complicated and sometimes not even Noetherian;
a non-Noetherian example is the cubic cone x31 + x32 + x33 = 0, see [BGG72]. Even
when it is Noetherian, in general this construction does not have desirable geometric
properties. For instance, Kashiwara’s theorem [HTT08, Theorem 1.6.1], that for
a closed embedding X ↪→ Y , DiffY -modules set-theoretically supported on X are
equivalent to DiffX -modules, fails in general for any non-cuspidal X and Y (see
Section 2.1.2).

A typical solution is to define the category so that this statement holds, i.e., choose
a closed smooth embedding X ↪→ Y and define DY -modX to be the category of
D-modules on Y set-theoretically supported on X are equivalent to D-modules on
X. It can be shown that DY -modX is independent of the choice of Y (see Section
2.1.1), hence we may abbreviate the notation to D-modX if we want to talk about
this category without the reference to a chosen closed embedding. But then, this
is no longer the category of modules over any ring. This leads to two definitions of
D-modules (DiffX -mod and D-modX). Another one, called crystals Crysr(X) were
first introduced by Grothendieck in [Gro68] where he defined crystalline topos and
related them to de Rham theory; Beilinson and Drinfeld in [BD] related crystals to D-
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modules and noted that the embedding theorem holds automatically in both smooth
and non-smooth settings, and in [GR14] Gaitsgory and Rozenblyum gave a modern
treatment. Crystals are defined as sheaves on X which are equipped with compatible
extensions (analogously to parallel transport) on infinitesimal thickenings. These
three definitions coincide for smooth varieties, that is

DiffX -mod ∼= D-modX
∼= Crysr(X)

(depending on which definition of crystals we use, this might need to be upgraded
to a derived equivalence. Modern definitions of crystals only make sense in the de-
rived/infinity category setting). More generally, it is shown in [SS88] and generalised
in [BN04], when the variety is Cohen–Macaulay and a cuspidal curve (or more gen-
erally there is a good cuspidal quotient morphism from a smooth variety to it), these
three definitions coincide.

One approach to singular varieties is via ‘derived algebraic geometry ’ - roughly, this
replaces ordinary rings by DG rings, and categories by DG (or triangulated) cate-
gories. In this context, it turns out that all three definitions, suitably interpreted,
coincide, and give a triangulated category of D-modules D(D-modX).

In this work, we consider the relationship between this DG category and the original
viewpoint of rings of Grothendieck differential operators. We prove that the derived
category of D-modules is equivalent to the category of DG modules over an explicit
DG algebra DiffdgX , which ‘corrects’ Grothendieck’s ring. Namely, it is concentrated
in non-negative degrees, with zeroth cohomology equal to DiffX , and with cohomol-
ogy bounded by the dimension of the variety (so it is a nilpotent extension of the
original ring).

The starting point of this work is the observation that there is a D-module DX ∈
D-modX on (singular) varieties which is a compact generator of the D(D-modX).
The fact that DX is a compact generator was already proved in [GR14] in the frame-
work of crystals, but we give an elementary proof in terms of modules over rings of
differential operators.

We easily deduce from the compact generator DX that:

Theorem 1.1.1. There is a derived equivalence between the derived categories of
D-modules on X and DG modules over DiffdgX ,

D(D-modX) ∼= D(DiffdgX -mod).

We emphasise that the result Theorem 1.1.1 itself is an easy consequence of [GR14],

4



but the contribution of this work is to elucidate the structure of DiffdgX and explore
the consequences of this statement.

In particular, in the case X is smooth or more generally cuspidal, we show DiffdgX
∼=

DiffX is concentrated in degree zero. And we recover the fact that, in cuspi-
dal/smooth cases, all definitions of D-modules coincide even in the underived setting.
When X need not be cuspidal, the idea to study D-modules as DG modules over a
DG algebra is new, to our knowledge.

The structure of chapter 2 of the thesis is as follows:

In Section 2.1, we prove Theorem 1.1.1. We write down the explicit compact gen-
erator DX ∈ D(D-modX) in the affine case. We give an elementary proof that it
compactly generates the derived category of D-modules on V supported on X, for
any closed embedding of X into a smooth affine variety V . We also explain how our
construction agrees with [BN04] in the cuspidal case.

We recall the seminormalisation Xsn and explain that:

Theorem 1.1.2. There is a derived equivalence between the categories

D(D-modX) ∼= D(D-modXsn).

Note that X is cuspidal if and only if Xsn is smooth. Moreover, if X is Cohen–
Macaulay, the equivalence is the derived version of the one explained in [BN04] (and
our argument in general is essentially the same as theirs).

In Section 2.2, in the case of a hypersurface, from Theorem 1.1.1 we derive the
interesting identity:

Corollary 1.1.3. If X = {f = 0} is a cuspidal hypersurface, then

DAn

DAn · f + f ·DAn
= 0.

The formula computes Ext1(DX , DX), and it vanishes if and only if Diff(X) =

Diff(X)dg; that is, if D-modules on X are the same as Diff(X)-modules. For general
f , we compute H•(Diff(X)dg) = Ext•(DX , DX) and its action on D-modules (more
precisely, on Ext•(DX ,M)).

Note that if Extm(DX ,M) for all m > 0, then under Theorem 1.1.1, M can be
realised as an ordinary D-module over Diff(X).
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In Section 2.3, we give some examples of our formulas and theorems in the case
of regular holonomic D-modules when the variety is a curve C. Define completely
nontrivial monodromy to mean that in the normalisation of C, all eigenvalues of
monodromies about exceptional points are not equal to 1 (see Definition 2.3.6). By
calculating Ext1(DC ,M), we show:

Theorem 1.1.4. The abelian subcategory of regular holonomic D-modules with
completely non-trivial monodromy around each non-cuspidal singularity over a curve
can be realised as ordinary modules over Diff(C), i.e., Extm(DC ,M) for all m > 0

and M in this abelian subcategory.

The converse also holds for simple regular holonomic D-modules on seminormal
curves.

Finally in Section 2.4, we study the case of holonomic D-modules on isolated quotient
singularities. In this case the results actually have the opposite flavour:

Theorem 1.1.5. For an isolated finite quotient singularity X, let L be a C∗-
equivariant local system, if there is trivial monodromy about singularities then L

can be realised as ordinary modules over Diff(X). The converse holds for intersec-
tion cohomology D-modules.

In [HK84] and later in [ES09] (see also [ES17]) a certain quotient M(X) of our com-
pact generator DX was considered which governs the invariants under Hamiltonian
flows. It was used to define a new homology theory which fuses Poisson homology
with the de Rham cohomology, which is particularly nice in the case of symplectic
singularities. Other quotients of DX were studied in [ES12], relating to other ge-
ometric structures on X. We hope that our study will have applications to these
quotients and plan to address this elsewhere.

1.2 Hochschild homology of quantisations

Let X be an affine Poisson variety (not necessarily smooth) over an algebraically
closed field of characteristic 0 (such as C). Denote O(X) its ring of functions and
{−,−} its Poisson structure. A star product ⋆ on O(X)[[ℏ]] is a C[[ℏ]]-bilinear as-
sociative unital (with unit the constant function 1) map O(X)[[ℏ]] × O(X)[[ℏ]] →
O(X)[[ℏ]], such that f ⋆ g = fg mod ℏ. Therefore there is a sequence of maps
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ϕi : O(X)×O(X) → O(X) such that

f ⋆ g = fg +
∑
i≥1

ℏiϕi(f, g) ∈ O(X)[[ℏ]].

Furthermore, if each ϕi is a bi-differential operator, we call ⋆ a differential star prod-
uct. Note that, if X is smooth, then it is shown in [Yek13, Theorem 8.2] that every
star product is gauge equivalent to a differential star product. It is an interesting
question if there exists a similar statement in the non-smooth case to the afore-
mentioned result of Yekutieli. In chapter 3 of the thesis, we assume all of our star
products are differential star products.

A deformation quantisation of (O(X), {−,−}) is by definition O(X)[[ℏ]] with a star
product such that ϕ1(f, g)− ϕ1(g, f) = {f, g}. We denote it Oℏ(X) = (O(X)[[ℏ]], ⋆).

In order to study the Poisson structure {−,−} (equivalently π ∈ Γ(X,
∧2 TX)) (resp.

its deformation), it is natural to consider the Poisson homology (resp. Hochschild
homology). Let us briefly recall the definition and some of the features of Poisson
homology and Hochschild homology here.

Poisson homology can be defined in at least two ways: one using the cotangent com-
plex LX with the differential dPoiss := Lπ = [ddR, iπ] and one using a double complex.
The latter is closely related to the Hochschild complex HC•(A,A) := (T≥1k A, dHoch).
The zeroth Poisson homology HP0(X,π) is given by O(X)/{O(X),O(X)}, which
is the vector space dual to the Poisson traces

{f : O(X) → C|f({a, b}) = 0 for all a, b ∈ O(X)}.

The zeroth Hochschild homology HH0(O(X)[[ℏ]]) is given by Oℏ(X)/[Oℏ(X),Oℏ(X)].
Higher homologies have less clear interpretations.

One may also ask about Poisson cohomology or Hochschild cohomology. In certain
cases, for example the unimodular case, there is a duality between Poisson homology
and cohomology, and in the Calabi–Yau case, between Hochschild homology and
cohomology. We focus on the homology theory in this thesis.

Although the zeroth Poisson homology of X is globally defined, it can be obtained
from a local object. In particular, in [ES09, Definition 2.2] an explicit D-module on
X was defined which encodes the zeroth Poisson homology. This is the main idea in
their paper. We recall the definition here:

Definition 1.2.1. M(X) := (HamX)\DX , where the submodule (HamX) is the
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(right) submodule of DX spanned by Hamiltonian vector fields ξf , where for f ∈
O(X), ξf ∈ Vect(O(X)) is defined by

ξf (g) = {f, g}.

Here and below, N\M denotes the (right) quotient module for N a submodule of
M . We use right modules because they behave more naturally with respect to the
D-module-theoretic pushforward, which we will need later, see below.

In [ES09], the authors used this D-module to define the so called Poisson-de Rham
homology of X:

HPdR
i (O(X)) := H−iπ∗MX ,

where π∗ is the D-module theoretic derived pushforward from X to a point.1 It was
shown in their paper that

HP0(O(X)) = HPdR
0 (O(X)).

Both the definition of the D-module and Poisson-de Rham homology make sense for
non-affine X.

The functor of point perspective for the above constructions is the following: DX

is the object that represents the functor of global sections on the category of right
D-modules on X; that is, if we fix a closed embedding X → V where V is affine and
smooth, for a D-module N set-theoretically supported on X,

ΓX(N) = Hom(DX , N),

where ΓX(N) is the subspace of the global sections of N as a sheaf on V which are
scheme-theoretically supported on X, i.e., locally annihilated by the ideal sheaf of X.
It is also possible to write down the functor of point perspective without assuming
that X is affine, see [ES17, Section A.2].

M(X) is the object that represents the functor of Hamiltonian invariant global sec-
tions on the category of right D-modules on X; that is,

ΓX(N)(HamX) = Hom(M(X), N),

where ΓX(N)(HamX) denotes the sections that are annihilated by the ideal (HamX)

which can be seen as a Lie algebra.

1In [ES09] they used the notation HPdR
i (X), but here we prefer HPdR

i (O(X)) notation to be
consistent with HHdR

i (Oℏ(X)), defined in Section 3.1.
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In chapter 3 of the thesis, we generalise the construction M(X) for an affine Poisson
variety X to Mℏ(X) for a quantisation Oℏ(X) of O(X). The module Mℏ(X) repre-
sents quantised Hamiltonian (Hamℏ,X) (see chapter 3) invariant global sections; that
is, if we fix a closed embedding X → V where V is affine and smooth, for a DV [[ℏ]]
module N set-theoretically supported on X (ignoring the ℏ action),

ΓX(N)(Hamℏ,X) = Hom(Mℏ(X), N),

where Hom now is taken over the category of DV [[ℏ]]-modules.

Following the idea defining the Poisson-de Rham homology in [ES09], we use Mℏ(X)

to define Hochschild–de Rham homology HHdR
i (Oℏ(X)) of Oℏ(X). This gives a

local enhancement of Hochschild homology of quantisations. Hochschild–de Rham
homology has nice features such as it is bounded and well-behaved for quantisations
of symplectic singularities.

The construction in chapter 3 of the thesis can also be extended to non-affine vari-
eties simply by gluing these Mℏ(X) together for a sheaf of quantisations.

Chapter 3 is structured as follows:

In Section 3.1, we define Mℏ(X) and use it to define the Hochschild–de Rham ho-
mology of a quantisation. We show it agrees with the usual Hochschild homology in
degree 0. We prove there is a canonical surjection M(X)[ℏ] ↠ grℏMℏ(X) of DX [ℏ]-
modules. We also study the case when X is smooth symplectic. Then the canonical
surjection becomes an isomorphism and hence we deduce that the Hochschild–de
Rham homology agrees with the usual Hochschild homology in this case.

In Section 3.2, we study Mℏ(X) in the presence of symplectic resolution ρ : X̃ → X,
generalising the smooth symplectic case. Our main result of the paper is the following
theorem.

Theorem 1.2.2. Let ρ : X̃ ↠ X be a projective symplectic resolution such that

• ρ∗ΩX̃
∼= M(X),

• X has locally conical singularities.

Assume further that the quantisation Oℏ(X) extends to a quantisation Oℏ(X) on
a (one-parameter) smoothing X of X. Then M(X)[ℏ] ∼= grMℏ(X) as graded mod-
ules. Moreover this can be strengthened to Mh(X) → M(X)[[ℏ]] ∼= ρ∗ΩX̃ [[ℏ]] is an
isomorphism as filtered modules.

Let X and Oℏ(X) satisfy the conditions of the theorem above. In particular, we see
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that in most cases:

Corollary 1.2.3.

HH0(Oℏ(X)) ∼= O(X)⊕HdimX(X̃,C[[ℏ]])

and
HP0(Oℏ(X))((ℏ)) ∼= HH0(Oℏ(X)[ℏ−1]) ∼= HdimX(X̃,C((ℏ)))

and it is independent of the quantisation, generalising the Nest–Tsygan theorem.

In Section 3.3, we study the holonomicity of Mℏ(X). More specifically we prove that
Mℏ(X)/ℏnMℏ(X) is holonomic for all n if X has finitely many symplectic leaves and
hence deduce finite generation of Hochschild homology in certain cases.

Finally, in Section 3.4, we study the smooth case and conjecture an isomorphism be-
tween the Hochschild–de Rham homology of the canonical Kontsevich quantisation
of the Poisson structure and the Poisson-de Rham homology of X.

1.3 Quantum topology and Skein theory

A fundamental invariant of an oriented 3-manifold M from quantum topology is its
“Kauffman bracket skein module” Sk(M) introduced by Józef Przytycki and Vladimir
Turaev. We recall the definition here.

Definition 1.3.1. For an oriented manifold M , Sk(M) is defined as the C[q, q−1]-
module formally spanned by all framed links in M , modulo isotopy equivalence and
the linear “Kauffman bracket” relations〈

L ∪
〉
= (−q2 − q−2)⟨L⟩〈 〉
= q

〈 〉
+ q−1

〈 〉
,

which are imposed between any links agreeing outside of an oriented 3-ball, and
differing as depicted inside that ball.

In fact, for every ribbon category A, it is possible to define a vector space SkA(M).
When A = Repq(G), for a reductive group G, we abbreviate it to SkG(M). When
G = SL2(C), we recover the definition above. It is possible to give a diagrammatic
description of G-skein modules for other groups analogous to the Kauffman skein
relations, though it becomes more complicated. See [CKM14] for a description for
SLn.

It was conjectured by Edward Witten that for a closed manifold M , the skein module
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SkG(M) is finite dimensional over C(q). This was proved by Sam Gunningham,
David Jordan and Pavel Safronov recently in [GJS19]. However, the proof they
gave is not by directly computing the dimensions. Rather, it is one of a number of
consequences of their theorems, which gives a new algebraic reformulation of skein
modules, and brings tools from the representation theory of quantum groups and
deformation quantization modules.

We explore some of their main ideas and compute explicitly the dimension of the
SLn-skein module SkSLn(T

3) of the three dimensional torus T 3 and show that

dimSkSLn(T
3) = P ⋆ J3(n),

where P is the number of partitions function, J3 is the third Jordan function and ⋆ is
the Dirichlet convolution. This generalises the results of [Car17] and [Gil16], which
showed that dimSkSL2(T

3) = 9.

Let’s recall some further basic notions in skein theory. If Σ is an oriented surface, the
skein module SkA(Σ× [0, 1]) = SkAlgA(Σ) is a skein algebra, where the composition
is given by stacking skeins on top of each other. Similarly, if M is a 3-manifold with
boundary Σ, then SkA(M) is naturally a module over SkAlgA(Σ).

One can use the above to construct a TFT ZA due to Kevin Walker. Namely, the
assignment of a skein module SkA(M) to a closed 3-manifold M and a skein category
SkCatA(Σ) to a closed 2-manifold Σ is a part of a topological field theory valued in
categories and their bimodules. See [GJS19, Chapter 2] for the definition of skein
category and relevant details.

It is a general feature of topological field theories that the value on S1 × X yields
the corresponding categorical dimension of the value on X. For a vector space, the
categorical dimension is the ordinary dimension (an integer) while for a category, it
is the categorical trace, or zeroth Hochschild homology. In [GJS19, Lemma 4.5], it
is proved that SkA(S

1 × Σ) ∼= HH0(SkCatA(Σ)) (or equivalently HH0(ZA(Σ))).

Disclaimer: The following (and chapter 4) will appear as part of a joint work [Gun+]
between the author and Sam Gunningham, David Jordan and Monica Vazirani.

Fix G = SLn, let T := (C∗)n−1 be a maximal torus of SLn and let W be the Weyl
group. For the case of the torus T 3 = T 2×S1 (not to be confused with T), in [GJS19,
Theorem 3], the following decomposition of abelian categories was advertised

ZSLn(T
2) ∼= LModDq(T)W

⊕
Vect⊕k,

where W = Sn is acting on the quantum (n− 1)-torus Dq(T) multiplicatively. Fur-
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thermore, the following isomorphism of algebras was desired

Dq(T)W ∼= SkAlgSLn
(T 2)

(see [FG98] for the SL2 case). Gunningham, Jordan and Vazirani proved both
isomorphisms in our collaboration. The algebra Dq(T )

W is known as the algebra
of W -invariant q-difference operators (see [BBJ18, Section 1.5]). Therefore,

SkSLn(T
3) ∼= HH0(Dq(T)W )

⊕
Ck.

If we know the dimension of HH0(Dq(T)W ), then it is possible to compute the
dimension of the entire skein module SkSLn(T

3). Indeed, for any 3-manifold M , the
mapping class group of M acts on the skein module SkG(M). When M = T 3, it
is well-known that the mapping class group is SL3(Z) (see, for example, [HW07],
though earlier reference must exist). Furthermore, there is also a H1(M,Z/nZ)
grading for SkSLn(M), and in the case M = T 3, the grading group is (Z/nZ)3. The
mapping class group acts on the skein module compatibly with the grading group.
In the case M = T 3, this is via a reduction homomorphism SL3(Z) → SL3(Z/nZ).
With this (Z/nZ)3 grading, we can show HH0(Dq(T)W ) is none other than the sum
of the components in degree (a, b, 0) for this (Z/nZ)3 grading. But then this is all
one needs to do, because the hyperplane of the form (a, b, 0) in the grading group
generates all degrees (a, b, c) under the SL3(Z/nZ) action. See [Gun+] for more
detail.

My main contribution to the collaboration is the computation of HH0(Dq(T)W ).
We solely focus on this part of the collaboration in this thesis.

It is well-known that SkAlgSLn
(T 2) is a quantisation of the SLn-character variety

(see [Tur91])

Hom(π1(T
2), SLn)///SLn = (SLn × SLn)///SLn

∼= (C∗)2(n−1)/Sn,

where the last isomorphism follows from [BS21a, Proposition 2.8]. This is a singular
symplectic variety when equipped with the Atiyah–Bott–Goldman structure. This
in fact admits a symplectic resolution (see chapter 4). It is known that Dq(T)W

has a one-parameter deformation H(W ), the spherical double affine Hecke algebra
(sDAHA). Again, see [BBJ18, Section 1.5].

We show the machinery of Chapter 3 will apply in this case. We hope to extend this
calculation to compute SkSLn(Σg × S1).
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1.4 Convention and recollections of D-modules

By a variety X, we always mean a reduced separated scheme of finite type over C.
We will always work with quasi-coherent D-modules.

We use the straight DX for the explicit D-module we define in this paper. We use
DiffX for the sheaf of rings of differential operators on X (which coincides with DX

when X is smooth). When X is affine, we reserve the notation Diff(X) for the ring of
Grothendieck differential operators on X. By a D-module on X, we will always
mean an element of D-modX . We will explicitly say Diff(X)-module when we
mean it. They of course coincide when X is smooth.

We use the term local system to mean an O-coherent right D-module (equivalently,
a vector bundle with a flat connection) on a locally closed smooth subvariety. We use
the term topological local system to mean a representation of the fundamental group
of such a subvariety. The Riemann–Hilbert correspondence give an equivalence of
categories of topological local systems and local systems with regular singularities.
We write IC(X) for the intermediate extension of the trivial local system.

In most scenarios, X will also be affine and it will have an embedding into An.

We also recall some aspects of the six functor formalism on the derived category
of D-modules, which we will use throughout the thesis. Here, all functors are taken
to be derived.

Let f : X → Y be a morphism of smooth irreducible algebraic varieties, N ∈
D(DY -mod) be a left module, M ∈ D(DX -mod) be a left module and d = dimX −
dimY .

• The functor f ! is defined on the derived category of all D-modules:

f !(N) := f•(N)[d],

where f• is the derived quasi-coherent pullback. The D-module structure is
defined via the product rule, [HTT08, Page 33].

• The transfer bimodules are:

DX→Y := f•(DY ) = OX ⊗f−1OX
f−1DY ,

DX←Y := ΩX ⊗OX
DX→Y ⊗f−1OY

f−1Ω⊗−1Y ,

where Ω is the canonical sheaf naturally viewed as a right D-module and f−1

is the sheaf-theoretic pullback, [HTT08, Definition 1.3.1, 1.3.3].
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• The functor f∗ is defined on the derived category of all D-modules:

f∗(M) := f•(DY←X ⊗L
DX

M),

where f• is the derived quasi-coherent pushforward (which coincides with the
abelian sheaf theoretic pushforward), [HTT08, Page 40].

• The functors f∗ and f ! are compatible with compositions, [HTT08, Proposition
1.5.11, 1.5.21].

• Let i : Z → X be a closed embedding, and j : X\Z → X the corresponding
open embedding, then we have an exact triangle:

i∗i
!M → M → j∗j

!M →,

[HTT08, Proposition 1.7.1].

• The functors f∗ and f ! are compatible with base change. That is, if

X ×Y S X

S Y

f

g

f̃

g̃

is a pullback diagram, then:

g! ◦ f∗ = f̃∗ ◦ g̃!,

[HTT08, Theorem 1.7.3].

• The functor D is defined on the derived category of coherent D-modules, and
mapping to the opposite category:

D(M) := HomDX
(M,DX)⊗OX

Ω⊗−1X [dimX].

Moreover, D2 = Id. [HTT08, Proposition 2.65].

• The functor f! := Df∗D is defined on the coherent D-modules M such that
f∗D(M) is coherent. [HTT08, Definition 3.2.12], but it could be defined earlier
in this reference.

• The functor f∗ := Df !D is defined on the coherent D-modules M such that
f !D(M) is coherent. [HTT08, Definition 3.2.12], but it could be defined earlier
in this reference.

14



• If f is proper, then f∗ preserves coherence, [HTT08, Theorem 2.5.1], and

f∗ = f!,

[HTT08, Theorem 2.7.2]. Moreover f! is left adjoint to f ! on the derived cate-
gories of coherent D-modules,

f! ⊣ f !,

[HTT08, Corollary 2.7.3].

• If f is a closed embedding, then f∗ is exact. This follows from Kashiwara’s
equivalence [HTT08, Theorem 1.6.1].

• If f is smooth, then f ! preserves coherence, [HTT08, Proposition 1.5.13 (ii)]
and

f∗ = f ![−2d],

[HTT08, Theorem 2.7.1].

So when f is étale, in particular an open embedding, f∗ = f !.

Also f ![−d] is exact, [HTT08, Theorem 2.4.6 (i)].

Moreover, f∗ is right adjoint to f∗ on the derived categories of coherent D-
modules,

f∗ ⊣ f∗.

This fact is not proved in [HTT08] and is mentioned in [Bra+, Theorem 2.3.9]
without proof. We don’t need to use the full version of the result except
the case when we have an open embedding. However, we include a proof for
completeness of the thesis. We will use the fact f∗ = f ![−2d] and our proof is
very similar to [HTT08, Corollary 2.7.3].

Proof. We want to prove

f•RHomDX
(f !M [−2d], N) ∼= RHomDY

(f∗M,N).
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We have

f•RHomDX
(f !M [−2d], N) ∼= f•((ΩX ⊗L

OX
Df !M [−2d])⊗L

DX
N)[−dimX]

∼= f•((ΩX ⊗L
OX

f !DM)⊗L
DX

N)[−dimX]

∼= f•((ΩX ⊗L
OX

N)⊗L
DX

f !DM [−dimX])

∼= f•((ΩX ⊗L
OX

N)⊗L
DX

DX→Y ⊗L
f•DY

f•DM [−dimY ])

∼= f•((ΩX ⊗L
OX

N)⊗L
DX

DX→Y )⊗L
DY

DM [−dimY ]

∼= f∗(ΩX ⊗L
OX

N)⊗L
DY

DM [−dimY ]

∼= (RHomDY
(M,DY )⊗L

OY
Ω−1Y )⊗L

DY
f∗(ΩX ⊗L

OX
N)

∼= RHomDY
(M,DY )⊗L

DY
(f∗(ΩX ⊗L

OX
N)⊗L

OY
Ω−1Y )

∼= RHomDY
(M,f∗(ΩX ⊗L

OX
N)⊗L

OY
Ω−1Y )

∼= RHomDY
(M,f∗N),

where we used [HTT08, Proposition 2.6.14] for the first line, [HTT08, Propo-
sition 1.5.19] for the third line, the projection formula [HTT08, Proposition
C.2.6] for the fifth line, [HTT08, Proposition 1.5.19] again for the eighth line,
[HTT08, Proposition 2.6.13] for the ninth line and the commutative square for
pushforward and side-changing [HTT08, Page 23] for the last line.

• All functors preserve holonomicity, [HTT08, Section 3.2].

• The functor D is exact on holonomic D-modules, [HTT08, Proposition 3.2.1].

• Restricting to holonomic D-modules, we have

f! ⊣ f !,

and
f∗ ⊣ f∗,

regardless of the properness and smoothness of f , [HTT08, Theorem 3.2.14].

16



Chapter 2

On the derived ring of differential
operators on a singularity

2.1 D-modules as modules over a DG algebra

Although when X is singular the category D-modX can no longer be viewed as the
category of modules over Diff(X), in this section, we introduce a better substitute
for Diff(X). This substitute will in general be a DG algebra rather than a usual ring.

In [BN04], they showed in the case when X has only cuspidal singularities one can
still use the ring of differential operators Diff(X) and the abelian category D-modX

is equivalent to Diff(X)-mod. We show that our DG algebra reduces to Diff(X) and
our equivalence reduces to the derived version of theirs in this case.

This section is divided into three parts: the first part deals with the general case,
the second part deals with the cuspidal case and the last part deals with a vanishing
result that we will need for Section 2.4.

2.1.1 General case

Suppose X is affine. We can choose i : X ↪→ V a closed embedding into a smooth
affine variety V (most of the time V = An); note that if X is smooth, we can just
take V to be X. Recall that we have defined the Kashiwara’s category D-modX to
be the full subcategory of D-modules on V that are set-theoretically supported on
X. It can be shown that this definition does not depend on the embedding i, that is
if ik : X ↪→ V are closed embeddings into smooth affine variety Vk for k = 1, 2, then
the full subcategory of D-modules on V1 that are set-theoretically supported on X

is equivalent to the full subcategory of D-modules on V2 that are set-theoretically
supported on X. See [ES17, Corollary A.9]. We define the following element of
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D-modX :
DX := IDV \DV ,

where I is the defining ideal of X. This is clearly a right DV -module that is supported
on X, hence by Kashiwara’s definition, an element of D-modX . The module DX

has the defining property Hom(DX ,M) = ΓX(M), the vector space of sections of
M scheme-theoretically supported on X (i.e., annihilated by I for some n). Note
that if X and V are smooth, DX is just the usual transfer module DX→V . The
object DX does not depend on the choice of embedding. Indeed, given two closed
embeddings ik : X ↪→ Vk for k = 1, 2, let IkX be the ideal defining X in Vk and
DX,k := IkXDVk

\DVk
. One can check that the equivalence of categories in [ES17,

Theorem A.8] sends DX,1 to DX,2. When X is not affine, we glue the categories of
the open subsets Ui of a covering together to obtain a canonical abelian category of
D-modules on X. The local objects DUi glue together in a canonical way to get a
global D-module. See [ES17, Section A.2] and [Bra+, Section 1.7.2].

We recall that an object E in the derived category T of an abelian category A is
called a generator if Hom(E[i],M) = 0 for all i ∈ Z, implies M = 0. The category
T is called cocomplete if it has arbitrary direct sums. An object C ∈ T is called
compact if Hom(C,−) commutes with direct sums. See [Lun10, Section 2.1].

We fix X with a closed embedding into V . Recall that DV -modX is the abelian
category of quasi-coherent D-modules on V supported on X and let DD-modX

(DV )

be the full subcategory of D(DV ) consisting of complexes with cohomology sheaves
supported on X.

The theorem below is a special case of a result of Gaitsgory–Rozenblyum, as we will
explain, but with a more explicit proof.

Theorem 2.1.1. Let X be an affine variety, then the module DX is a compact
generator in D(DV -modX).Ask Travis if this is ok.

Proof. Generation: To show it is a generator, it is enough to observe that DX has
a nonzero map to every nonzero D-module M supported on X, as then there is a
map from DX [−i] a nonzero complex with a nonzero term M sitting in degree i.
Take M to be a non-zero D-module supported on X, then because every element
is annihilated by In for some n, for 0 ̸= m ∈ M , we can choose n to be such that
In ·m = 0 and In−1 ·m ̸= 0, choose m′ ∈ In−1 ·m. Hence there is a non-zero map
sending 1 ∈ DX to this element m′.

Compactness: To show it is compact in D(DV -modX), it is enough to show it is
compact in D(DV ) as D(DV -modX) is a full subcategory. Recall compactness is
equivalent to perfectness in derived categories of rings [SP, Proposition 15.78.3] and
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a perfect complex is a finite complex of locally projective objects. Since OV has
finite global dimension, we can take a finite projective resolution P • of OX as an
OV -mod. Consider P • ⊗OV

DV . This complex is an object in DA(DV ) because
supp(M ⊗OV

N) = suppM ∩ suppN . Since DX = OX ⊗OV
DV , we have that

P • ⊗OV
DV is a finite projective D-module resolution of DX as DV is flat over OV .

This completes the proof.

Remark 2.1.2. If X is not affine, this construction still produces a compact object
which is locally a generator.

Remark 2.1.3. 1. In [GR14, Corollary 3.3.3], the authors proved a more general
statement (but they require more difficult preliminaries) than Theorem 2.1.1,
for a general variety X (not necessarily affine), replacing OX by a compact
generator M of OX -mod, so that the compact generator of D-mod is the in-
duction of M . This induction makes sense in general, but in the case that X

is embedded into a smooth affine variety V , it is i∗M ⊗L
OV

DV .

2. Furthermore, in [GR14, Proposition 4.7.3] they proved that for X is a variety,
with a closed embedding into V . Then the inclusion functor

i : D(DV -modX) → DD-modX
(DV ) (†)

is an equivalence of categories. In particular, it is fully faithful.

Note that in [GR14] it is stated that i : D(Crysr(X)♡) → Crysr(X) is an
equivalence, where ♡ denotes the heart of the t-structure. This is equivalent
to our statement because by [GR14, Section 5.5] the category of right crystals
Crysr(X) can be canonically identified with the (derived) category of right D-
modules on X, and furthermore by Kashiwara’s Lemma [GR14, Proposition
2.5.6] Crysr(X) can be identified with crystals on V supported on X.

This result can be thought of as an analogue of Beilinson’s result for perverse
sheaves [Bei87, Theorem 1.3]: the derived category of the abelian category of
perverse sheaves is the derived constructible category.

This theorem is important because it shows that two natural derived categories
of D-modules are equivalent.

An abelian category C is called a Grothendieck category if it has a g-object, small
colimits and the filtered colimits are exact. Recall that an object G ∈ C is called
a g-object if the functor C → HomC(G,C) is conservative, i.e. C1 → C2 is an
isomorphism as soon as Hom(G,C1) → Hom(G,C2) is an isomorphism. In the case
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of a cocomplete abelian category, this is equivalent to saying that every object C of
C admits an epimorphism G(S) → C, where G(S) denotes a direct sum of copies of
G, one for each element of the (possibly infinite) set S. Such an object G is usually
called a generator, but we already used this term previously. For more detail, see
[Lun10, Section 2.4].

Note that the abelian category of quasi-coherent D-modules (i.e. quasi-coherent after
forgetting to O-modules) on an affine variety X is a Grothendieck category. This fact
is mentioned in [GR14, Section 4.7], but we give more detail here. We only need to
show it has a g-object, as the other axioms are obvious. We let G =

⊕
n I

nDV \DV ,
where i : X → V = An is a closed embedding and I is the defining ideal. This is a
g-object since if M is supported on X, then every element is killed by some element
in In. It implies that there is a surjective map from G(S) to M .

Remark 2.1.4. As any Grothendieck category has enough injectives, the above
implies that the abelian category of D-modules on a variety X has enough injectives.

We recall the following fact about Grothendieck categories (see [Kel94, Lemma 4.2,
Theorem 4.3], but we are using the version found in [Lun10, Proposition 2.6]):

Proposition 2.1.5. Let A be a Grothendieck category such that the triangulated
category D(A) has a compact generator E. Then the functor RHom(E,−) : D(A) →
D(REnd(E)-mod) is an equivalence of categories.

Here D(REnd(E)-mod) denotes the derived category of right DG modules, which is
the localisation of homotopy category Ho(REnd(E)) with respect to quasi-isomorphisms,
see [Lun10, Section 2.3].

Remark 2.1.6. As the inverse functor of an equivalence is always given by the
adjoint, the inverse functor to RHom(E,−) is given by M 7→ M ⊗REnd(E) E.

Notice that in the case H•(REnd(E)) is bounded in degree, the functor RHom(E,−)

maps Db(A) into Db(REnd(E)-mod). This is also an equivalence since the inverse
also maps Db(REnd(E)-mod) into Db(A).

Combining Theorem Theorem 2.1.1 and Proposition 2.1.5, we get the following corol-
lary.

Corollary 2.1.7. There is an equivalence of categories between the bounded derived
category of quasi-coherent D-modules on an affine variety X and the bounded derived
category of DG modules over REnd(DX):

Db(D-modX) ∼= Db(REnd(DX)-mod).
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This gives a proof of Theorem 1.1.1: define Diff(X)dg := REnd(DX). We get a
triangulated equivalence

D(D-modX) ∼= D(Diff(X)dg-mod).

Remark 2.1.8. If X is not affine, but X ↪→ V is still a closed embedding into a
smooth variety, as we explained at the beginning of the section that DX can still
be defined. In this case, we still have an equivalence of D(A) → REnd(DX)-mod,
where REnd(DX)-mod is a category of sheaves of modules on X.

Recall Grothendieck’s filtration on Diff(X) for any variety X:

Diff(X) =
⋃
n≥0

Diff(X)n,

where

1. Diff(X)0 := O(X),

2. Diff(X)n := {d ∈ EndC(O(X))|[d,O(X)] ⊂ Diff(X)n−1}.

Note that DX is also filtered, as it is a quotient of filtered modules. Therefore
End(DX) is also filtered, where the filtration is given by

End(DX)n := {f ∈ End(DX)|f((DX)k) ⊂ (DX)k+n},

where (DX)k denotes the kth filtered piece of DX .

The following description of the (underived) endomorphisms of DX , proved by an
explicit computation on V , has been known to experts for a long time (see [MRS01,
Theorem 15.3.15], [Bra+, Theorem 1.7.1]). While the formula is old, we got the idea
to think of it in terms of the object DX from [Bra+].

Theorem 2.1.9. There is a canonical filtered isomorphism

ϕ : End(DX) → Diff(X).

As the algebra End(DX) sits in our DG algebra REnd(DX) in degree zero and by the
Theorem it is isomorphic to the usual ring of differential operators, we see that one
to to view the the higher DG structure of REnd(DX) is that it detects singularities
and serves as a correction to Diff(X) in the singular case.
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2.1.2 Cuspidal Case

We now turn the attention to the cuspidal case. Recall we say f : Y → X is
a universal homeomorphism if for every morphism Y ′ → Y the pullback f(Y ′) :

Y ′ ×Y X → Y ′ is a homeomorphism. Equivalently, f : X → Y of k-varieties is a
universal homeomorphism if and only if f satisfies:

1. f is a finite morphism.

2. f is surjective.

3. For every algebraically closed field K, the map X(K)
f(K)−−−→ Y (K) is injective.

Definition 2.1.10. We say f : Y → X is a cuspidal quotient morphism if it is a
universal homeomorphism and X and Y are Cohen–Macaulay. It is a good cuspidal
quotient morphism if, in addition, a certain local cohomology sheaf vanishes, which
is automatically satisfied if X (or Y ) is a smooth variety. We say a Cohen–Macaulay
variety X is cuspidal if there is a cuspidal quotient morphism from a smooth variety
to X. In the curve case, this is equivalent to the normalisation map being a bijective
resolution of singularities. Note the definition of cuspidal includes the case of smooth
varieties. See [BN04, Section 2] and the references therein.

Examples of cuspidal quotient morphisms include the normalization map of a curve
with cusp singularities, the normalization map h → Xm of the space of quasiinvari-
ants for a Coxeter group, and the Frobenius homeomorphism in characteristic p, see
[BN04, Section 1.2]. There are also examples from the geometry of Lie algebras, see
[Los22, Theorem 4.4].

In [BN04], the authors used Diff(X)-modules rather than Kashiwara’s category
D-modX . Let DiffX(M,N) be differential operators from M to N , where M and N

are OX -modules. Suppose f : Y → X be a general morphism, the authors defined
transfer bimodules DBN

X←Y and DBN
Y→X as duals of jets [BN04, Definition 2.5, 2.12].

Their key results in the affine case are summarised in the following theorem:

Theorem 2.1.11. If f : Y → X is a good cuspidal quotient morphism, then the
following hold:

(1) If Y is smooth, and consider a closed embedding i : X → Z into a smooth Z,
then the D-module pushforward f∗ and pullback f ! induces an equivalence:

D-modY
∼= D-modX ,

[BN04, Proposition 3.24].

(2) The bimodules transfer bimodules DBN
X←Y , DBN

X→Y induce Morita equivalences
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of the categories of (left or right) Diff(Y )-modules and Diff(X)-modules:

Diff(Y )-mod ∼= Diff(X)-mod.

Furthermore, DBN
X←Y is projective as a left module over Diff(X) and as a right

module over Diff(Y ) [BN04, Theorem 4.3].

(3) If Y is smooth, D-modX
∼= Diff(X)-mod [BN04, Corrolary 4.4].

(4) DBN
X←Y = DiffX(OY ,OX) [BN04, Corollary 2.14].

Note that (3) follows from (1) and (2), and we will strengthen (1) in Proposition
2.1.14.

Remark 2.1.12. Since, by our definition, varieties are reduced, in the curve case
the Cohen–Macaulay condition is automatically satisfied. The above theorem gener-
alises the curve case result found in [SS88] saying that the category of D-modules on
a cuspidal curve is Morita equivalent to the category of D-modules on its (smooth)
normalization. This is a generalisation, because for cuspidal curves, the normalisa-
tion map is a universal homeomorphism, which is a cuspidal quotient morphism.

Theorem 2.1.13. If X is cuspidal, then DX is sent to Diff(X) under the equivalence
of 2.1.11(3). Furthermore,

REnd(DX) ∼= End(DX) ∼= Diff(X).

Therefore, the functor REnd(DX ,−) in Proposition 2.1.5 is the derived functor of
the abelian equivalence in Theorem 2.1.11(3).

We see that REnd(DX) has vanishing higher cohomology when X is not smooth but
cuspidal. This shows REnd(DX) does not detect all the singularities in the sense
that there will be no higher DG structure and REnd(DX) ∼= Diff(X) in degree 0 if
X is a cuspidal but not smooth.

Proof. Consider Y → X ↪→ An, with both Y and An smooth and f : Y → X is a
cuspidal morphism, i : X ↪→ An is a closed embedding. Let I be the ideal defining
X.

Firstly, we show that f !DX = DBN
X←Y . Since f ! has an inverse, it is equivalent to

show f∗D
BN
X←Y = DX , which by definition means that i∗f∗D

BN
X←Y = IDAn\DAn .

This means that DBN
X←Y is sent to DX under the equivalence of 2.1.11(1).
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We have:

(i ◦ f)∗DBN
X←Y =DBN

X←Y ⊗DY
DY→An

=DBN
X←Y ⊗DY

OY ⊗OAn DAn

=DBN
X←Y ⊗DY

OY ⊗OX
Diff(X)⊗Diff(X) OX ⊗OAn DAn

=DBN
X←Y ⊗DY

DBN
Y→X ⊗Diff(X) OX ⊗OAn DAn

=Diff(X)⊗Diff(X) IDAn\DAn

=IDAn\DAn ,

where we used [BN04, Lemma 4.2(2)] for OY ⊗OX
Diff(X) = DBN

Y→X and [BN04,
Theorem 4.3] for DBN

X←Y ⊗DY
DBN

Y→X = Diff(X).

By [BN04, Theorem 4.3] again, DBN
X←Y is sent to Diff(X) under the equivalence of

2.1.11(2), this must mean that Diff(X) and DX are equivalent under the equivalence
of Theorem 2.1.11 (3).

Next, because f induces an equivalence between D-modY and D-modX , we must
have that for i > 0:

ExtiD-modX
(DX ,M) = ExtiD-modY

(f !DX , f !M)

= ExtiDiff(Y )-mod(D
BN
X←Y , f

!M)

= 0,

where for the last line, we used that DBN
X←Y is projective in the good cuspidal case.

And hence in the good cuspidal case, the functor M 7→ RHom(DX ,M) from Db(A)

to Db(REnd(DX)-mod) is actually an abelian functor, i.e., it restricts to an exact
functor of abelian categories from D-modX to End(DX)-mod (which is Diff(X)-mod
by Theorem 2.1.9). The module DX is mapped to Diff(X).

Since both abelian equivalences send the compact projective generator DX to the
same compact projective generator Diff(X), by embedding D-modX into D-modV

and using Eilenberg–Watts theorem ([Eil60] [Wat60]), the functor Hom(DX ,−) is
the only possible equivalence. Therefore our equivalence reduces to the equivalence
in [BN04] in the cuspidal case.

The D-module equivalence in Theorem 2.1.11 (1) can be easily generalised to remove
the good condition at the cost of getting a derived equivalence rather than an abelian
equivalence. We are going to use the following proposition in Section 2.3.

Proposition 2.1.14. Suppose f : Y → X is a universal homeomorphism, then there
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is a derived equivalence between D-modules on Y and D-modules on X.

We mimic the proof of [BN04, Proposition 3.14].

Proof. Consider the Cartesian diagram

Y ×X Y Y

Y X.

p1

p2 f

f

Since f is proper (because f is a universal homeomorphism, it is universally closed
and of finite type, and we have assumed separatedness already), we can use proper
base change: p1∗p2

! = f !f∗, see [Gai13, Proposition 5.4.2]. Note that a D-module
on Y ×X Y is the same as a D-module on Y × Y set-theoretically supported on the
diagonal ∆ : Y → Y × Y . Indeed (Y ×X Y )red = ∆(Y )red. The maps p!2 and p1∗

can be identified with the pullback and pushforward of π : ∆(Y ) → Y . Therefore,
by embedding Y into a smooth variety we see that by Kashiwara’s equivalence, we
have p1∗p2

! = Id and hence by proper base change f !f∗ = Id.

To show that f∗f ! = Id, note that we have a natural map f∗f
!N → N , and complete

the cone. We have f∗f
!N → N → M , and thus we get f !f∗f

!N → f !N → f !M ,
which is f !N → f !N → f !M by the above paragraph. Hence f !M = 0. Note that f

is surjective and dominant. Suppose that M ̸= 0. Let Z be an irreducible component
of the (reduced) support of M . By passing to a smooth dense subset, we may assume
that Z is smooth. Let z be the generic point of Z. Then Mz is a nonzero vector space
over the residue field κ(z). By dominance, there is an irreducible component Z ′ of
Y such that for its generic point z′, the induced map OZ,z → OZ′,z′ is an injection
(a field extension). Therefore, f !Mz is given as:

κ(z′)⊗κ(z) f
−1(Mz)[dimX − dimY ],

which is nonzero (and concentrated in degree 0 as dimX = dimY because f is a
universal homeomorphism). This is a contradiction.

Remark 2.1.15. It follows from Theorem 4.3 and Remark 4.5 of [BN04] that in the
good cuspidal case, the derived equivalence is in fact abelian.

We now recall seminormalisation.

Definition 2.1.16. If X is a variety, then the seminormalisation Xsn is the initial
object in the category of universal homeomorphisms Y → X.

25



Seminormalisation always exists and note that by definition a curve is cuspidal if
and only if its seminormalisation coincides with its normalisation. See [SP, Section
29.47].

Remark 2.1.17. A variety X is cuspidal if and only if Xsn is smooth. Indeed, by
definition Xsn is smooth implies that X is cuspidal. Conversely, if Y → X is a
universal homeomorphism from a smooth variety Y , then by the universal property,
there is a map Xsn → Y , and since this is a finite birational map (as it factors
through one), as Y is normal (as it is smooth), Zariski’s main theorem implies that
Xsn ∼= Y and hence Xsn is smooth. Ask Travis if this is OK

We have the following corollary.

Corollary 2.1.18. Let f : Xsn → X be the seminormalisation map. There is a
derived equivalence

Db(D-modX) ∼= Db(D-modXsn),

where the equivalence is induced by f∗ and f !.

2.1.3 Vanishing Ext for D-modules

For a general X, we have the following vanishing result:

Proposition 2.1.19. If M ∈ D-modX is supported at a point then

ExtiD(D-modX)(DX ,M) = 0

for i ≥ 1.

Proof. Since by embedding X into a smooth V , D-modX is a subcategory of Diff(V )-mod,
we can do the calculation in the later category. If M is supported at a point, then
M is just a direct sum of delta modules (i.e., M ∼= ipt∗(C) where ipt is the inclusion
map of the point). We can restrict to a local calculation in a formal neighbourhood
V of the origin with coordinates x1, . . . , xn and assume without loss of generality
that the point is the origin and that M = C[∂x1 , . . . , ∂xn ]. As it is shown in [Mat87,
Application 3], it is the injective hull of C in C[[x1, . . . , xn]].

We claim that
C[x1, . . . , xn] ↪→ C[[x1, . . . , xn]]

is a flat ring extension. Indeed C[[x1, . . . , xn]] is the product of a countable family
of copies of C[x1, . . . , xn] as C[x1, . . . , xn]-modules. It is known that for any ring A,
the direct product of any family of flat A-modules is flat if and only if the ring A

is coherent, that is, every finitely generated ideal is finitely presented. See [Cha60,
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Theorem 2.1]. In our case, the ring C[x1, . . . , xn] is Noetherian by Hilbert Basis
Theorem, hence is also coherent. This proves the claim. Is this necessary?

As we showed M is an injective C[[x1, . . . , xn]]-module and C[x1, . . . , xn] ↪→ C[[x1, . . . , xn]]
is a flat ring extension, by [SP, Lemma 10.39.4], M is also an injective C[x1, . . . , xn]-
module.

Then by the derived tensor-hom adjunction [Wei94, Theorem 10.8.7], we have

RHomD(DV )(OX ⊗L
OV

DV ,M) ∼= RHomD(OV )(OX ,RHomD(DV )(DV ,M)).

As DV is flat over O(V ), taking the i-th cohomology we get

ExtiDV
(DX ,M) ∼= ExtiOV

(OX ,M),

which is 0 as M is injective.

Remark 2.1.20. More generally, the injective dimension of M as an O-module is at
most dim suppM for a general D-module. See [Lyu00, Main Theorem] and [Lyu93,
Theorem 2.4]. Therefore we get Exti(DX ,M) = 0 for i > dim supp(M).

2.2 Calculation of cohomology in the hypersurface case

In this section, we restrict to the case where we have a hypersurface X that is
cut out by a single equation f in An. We wish to calculate the cohomology of
RHom(DX , DX) or more generally RHom(DX ,M), where M is a D-module sup-
ported on X. We will see that Exti(DX ,M) will vanish for i ≥ 2. In the hypersur-
face case we can write down the formula for Ext1(DX ,M) easily once we have the
correct derived category of D-modules supported on X.

There is a free resolution 0 → DAn → DAn → DX → 0, where the first map is
applying multiplication by f on the left and the second map is the quotient map.
Note here we are invoking (†) of Remark 2.1.3(2).

We can replace the object DX with its free resolution DAn
f ·−→ DAn . By Theorem

2.1.3, RHomDb(A)(DX ,M) is isomorphic to

RHomDb
A(DV )(DAn

f ·−→ DAn ,M).

Since Db
A(DV ) is defined as the full subcategory of Db(DV ), this is

RHomDb(DV )(DAn
f ·−→ DAn ,M).
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The complex is then M → M where the map now is applying multiplication by f

on the right. Therefore,

Ext0(DX ,M) = Mf := {m ∈ M,mf = 0},

Ext1(DX ,M) = M/Mf,

in particular

Ext1(DX , DX) =
DAn

DAn · f + f ·DAn
.

Note this is only a vector space, not a DAn-module.

Recall by Theorem 2.1.13, Ext1(DX ,M) = 0 for cuspidal X. This shows for cuspidal
singularities, DAn

DAn ·f+f ·DAn
is 0, for which we can’t find a purely algebraic proof.

To summarise, we have the following:

Formula 2.2.1. In the case X is defined by a single equation f , we have that

1. Hom(DX ,M) = (M)f .

2. Ext1(DX ,M) = M/Mf .

3. Ext≥2(DX ,M) = 0.

4. When X is a cuspidal hypersurface (automatically CM and including smooth)
then

DAn

DAn · f + f ·DAn
= 0.

Even though Ext1(DX ,M) is in general not a DAn-module, it is however still an
REnd(DX)-module, where now we have viewed it as a module over a DG algebra.
Taking cohomology we have:

Lemma 2.2.2. Ext1(DX ,M) is a module over Ext•(DX , DX) via the Yoneda prod-
uct.

An interesting question is when Ext1(DX ,M) is zero. In this case, RHom(DX ,M) ∼=
Hom(DX ,M) can be viewed as an ordinary module over Diff(X) (with possible higher
A∞ structure).

2.2.1 Action of cohomology in the hypersurface case

Lemma 2.2.3. The action of End(DX) on Hom(DX ,M) is usual composition; the
action of End(DX) on Ext1(DX ,M) is a twisting action (see the proof below). And
the action of Ext1(DX , DX) on Hom(DX ,M) is the usual multiplication upon iden-
tifying Ext1(DX , DX) with DX/DXf .
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Proof. Note that

REnd(DX) =RHom(DAn → DAn , DAn → DAn)

=DAn → DAn ⊕DAn → DAn ,

where the first arrow and second arrow are given explicitly by

a 7→ fa⊕ af, α⊕ β 7→ −fβ + αf. (2.1)

Note there is a quasi-isomorphism

DAn DAn ⊕DAn DAn

0 DX ⊕ 0 DX ,
−·f

where the vertical maps are either the zero map (DAn → 0) or the projection map
(DAn → DX).

Multiplication is given by

(a1, b1 ⊕ c1, d1)(a2, b2 ⊕ c2, d2) = (a1c2 + b1a2, a1d2 + b1b2 ⊕ c1c2 + d1a2, c1d2 + d1b2)

and its action on RHom(DX ,M) = M → M is given by

(e, g) · (a, b⊕ c, d) = (ga+ eb, gc+ ed) (2.2)

Now we can calculate the action of End(DX) = (DX)f on Hom(DX ,M) = Mf and
Ext1(DX ,M) = M/Mf , via the action and the quasi-isomorphism described above.

From the map (2.1), we get the expression

End(DX) =
{(α, β)|αf = fβ}

{f · a⊕ a · f |a ∈ DAn}
.

The algebra End(DX) is a quotient of a subspace of DAn ⊕DAn and Hom(DX ,M)

is a subspace of M , therefore the action is induced by equation (2.2): e · (b⊕ c) = eb.
Note the isomorphism

{(α, β)|αf = fβ}
{f · a⊕ a · f |a ∈ DAn}

→ (DX)f

is given by projecting to the first coordinate. The inverse isomorphism is given by
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first lifting to an element α in DAn then solving the equation

αf = fβ (2.3)

for β, then sent to the quotient. An alternative basis for DAn is given by

xi11 . . . xinn ∂j1
x1

. . . ∂jn
xn
,

hence there are no f -torsion elements in DAn and the solution to the equation is
unique. As α is a lift of (DX)f in DAn , we have αf = 0 in DX , which means
αf = fβ in DAn for some β. Hence solutions to equation (2.3) exist. Since the
action only depends on the first coordinate, we see that the action of End(DX) on
Hom(DX ,M) is the usual multiplication.

On the other hand, the action on Ext1(DX ,M) is a bit more complicated, it has a
twist : Ext1(DX ,M) is a quotient of M and the action is induced by g · (b⊕ c) = gc.
Therefore, the action is given by multiplication by β after solving the equation (2.3).
It is worthwhile to remark that β has the same principal symbol as α, so after taking
the associated graded module (with respect to either the arithmetic1 or the geometric
filtration2 [Bra+, Page 9]), the action is the same as without taking the twist.

The action of Ext1(DX , DX) on Hom(DX ,M) is induced by e · d = ed. Upon
identifying Ext1(DX , DX) with DX/DXf we see that the action is just the usual
multiplication.

Example 2.2.4. We compute Ext1(DX , DX) explicitly when X = SpecC[x, y]/(xy),
the union of two axes in the plane.

Claim: We claim that an explicit basis is given by

P (∂x, ∂y), y∂yP (∂x, ∂y),

where P is a monomial in ∂x, ∂y.

To show this, we will use the Diamond Lemma, see [Sch16, Proposition A.2.5].
Choose any ordering such that x > y. Note that Ext1(DX , DX) = DA2/xyDA2 +

DA2xy.

Proof. The relations are the span of:
1F0D = k, F1D = k + span(xj ,

∂
∂xj

), FiD is the image of F1D
⊗i under the multiplication map.

2F0D = k[x1, . . . , xn], F1D = span(f ∈ k[x1, . . . , xn]; g
∂

∂xj
where g ∈ k[x1, . . . , xn]), FiD is the

image of F1D
⊗i under the multiplication map.
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1. xyg, where g is a monomial of x, y, ∂x, ∂y (from xyDAn);

2. xg, where ∂x is not a factor of g;

3. yg, where ∂y is not a factor of g;

4. and (bx∂x + ay∂y)g + abg, for all g, with a = 1 + deg∂x g and b = 1 + deg∂y g
(from DA2xy then subtract from xyDA2).

clean this up?

Using the last line allows us to get rid of all multiples of x∂x; in what remains, we
can get rid of all multiples of x by the second line.

But there are some redundancies: if we have (xy∂x)g, we get this to zero by the first
line, or to −(a+ 1)y((1/b)y∂y + 1)g by the last line.

This means that we can also get rid of multiples of y2∂y. We can get rid of all y’s
when not a multiple of ∂y.

These are all the redundancies in applying the reductions

xyg → 0,

xg → 0,

when g is not a multiple of ∂x, yg → 0 when g is not a multiple of ∂y, and

x∂xg → −a((1/b)y∂y + 1)g.

So by the Diamond Lemma, we have found a basis consisting of the remaining ex-
pressions, which are of the form P (∂x, ∂y), y∂yP (∂x, ∂y). This proves the claim.

From this basis we see that if we look at the dimensions of the filtered pieces with
respect to the additive filtration, the sequence of dimensions is a sum of shifted
triangular numbers with one in deg 0, one in deg 2, namely numbers of the form

i(i+ 1)

2
+

(i+ 2)(i+ 3)

2
.

The first several terms of the sequence is 1,3,7,13,21,31...

We also compute the action of End(DX) on Ext1(DX , DX). Note that elements in
End(DX) are h ∈ DX such that hxy = 0 i.e. hxy = xyg for some g ∈ DA2 . Also
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note that

xiyj∂n
x∂

m
y xy = xiyj(xy∂x∂y + by∂y +mx∂x + nm)∂n−1

x ∂m−1
y .

So h has representatives

1. xiyj∂n
x∂

m
y , where i, j ≥ 1

2. yj∂m
y , where j ≥ 1, and

3. yi∂n
y , where i ≥ 1,

in DA2 . And as we noted before, the action is given by multiplication of the cor-
responding xi−1yj−1(xy∂x∂y + ny∂y +mx∂x + nm)∂n−1

x ∂m−1
y with the elements of

Ext1(DX , DX). Note that the action is completely determined by the action of x∂n
x

and y∂m
y since they generate End(DX). The corresponding elements are x∂n

x+n∂n−1
x

and y∂m
y +m∂m−1

y . So the action is

x∂n
x · ∂i

x∂
j
y = x∂n+i

x ∂j
y + n∂n−1+i

x ∂j
y = n∂n−1+i

x ∂j
y

y∂m
y · ∂i

x∂
j
y = y∂i

x∂
j+m
y +m∂i

x∂
m−1+j
y

x∂n
x · y∂y∂i

x∂
j
y = xy∂n+i

x ∂j+1
y + ny∂n−1+i

x ∂j+1
y = ny∂n−1+i

x ∂j+1
y

y∂m
y · y∂y∂i

x∂
j
y = y2∂i

x∂
j+m+1
y +my∂i

x∂
m−2+j
y .

Note that this example explicitly shows that Ext1(DX ,M) does not vanish in general.

2.3 Holonomic D-modules on curves

In this section, we calculate Ext1(DX ,M) for M a (regular) holonomic module on
a curve X. In the general case, we show that if M is simple and has nontrivial
monodromies in the normalisations of the preimages of the non-cuspidal singular-
ities then Ext1(DX ,M) vanishes, and we conjecture the converse direction is also
true for simple M . We prove the conjecture in the case of X is a planar multicross
singularity. We show that for every curve X, there exists a curve with planar mul-
ticross singularities Xpl such that the derived categories of D-modules on them are
equivalent.

We need use the following key lemma for this and the next section:

Lemma 2.3.1. Let X be a variety consists of only isolated singularities. For i ≥ 1,
the sheaf ExtiDV

(DX ,M) is a direct sum of sheaves concentrated on the non-cuspidal
singular locus.
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Proof. We know that Ext1(DX ,M) = 0 if and only if Ext1(DX ,M)p = 0 for all
points p ∈ X by [Har77, Proposition 1.1]. As DX is a coherent D-module, by
[HTT08, Lemma 2.6.4.], for any affine open subset U of X we know that

RHomDV
(DX ,M)|U ∼= RHomDU

(DX |U ,M |U ).

Our question is local, we may assume X is affine. As DX is finitely generated, by
mimicking the proof of [Har77, Proposition 6.8] for O-modules, we see that

ExtiDV
(DX ,M)p ∼= ExtiDV p

(DXp,Mp).

what is the order of things?

We can calculate the stalk of ExtiDV p
(DXp,Mp) in formal neighbourhoods: by flat

base change for Ext [SP, Lemma 10.73.1],

Exti ˆDV p
( ˆDXp, M̂p) ∼= ExtiDV p

(DXp, M̂p) ∼= ExtiDV p
(DXp,Mp)⊗DV p

ˆDV p,

where the hat denotes completion and the last equality follows as ˆDV p is flat over
DV p.

Hence by analysing formally locally, if the point p is a cuspidal point (which include
the smooth case), then by Theorem 2.1.11, we have concluded that the higher Ext
groups vanish Exti(DX ,M)p = 0. Therefore, the sheaf is concentrated at the non-
cuspidal singular points. The singular points are isolated, so we see we only need to
do the calculation locally around each non-cuspidal singular point, and Exti(DX ,M)

must be a direct sum of skyscraper sheaves.

2.3.1 General curve

Let j : U → X is an open embedding with U smooth. Recall Corollary 2.1.18 about
the equivalence between the categories of D-modules on X and its seminormalisation
Xsn.

Recall that the intermediate extension IC(N) for a holonomic D-module N on U is
the image of canonical morphism j!N → j∗N from the adjunction, where j is the
inclusion of the affine locally closed subset U . Every simple holonomic D-module is
of the form IC(N) for a simple integral connection N on some locally closed subset
Y . See [HTT08, Theorem 3.4.2 (ii)].

Definition 2.3.2. Let j : U → X be an affine open embedding and N a holonomic
D-module on U . We call an intermediate extension IC(N) coclean if the canonical
morphism IC(N) ↪→ j∗N is an isomorphism.
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Note the original definition of clean is if we have j!N ∼= IC(N). See [Ost05, Section
2.3] and the references therein.

Lemma 2.3.3. Let j : U → X be an affine open embedding and N a holonomic
D-module on U . If M = IC(N) is coclean (that is, IC(N) ∼= j∗N), then

Ext1(DX ,M) = 0.

Proof. We have

RHom(DX , j∗N) = RHom(DU , N) = ΓU (N),

where for the last equality we used U is affine. In particular, Exti(DX , j∗N) = 0 for
all D-modules N on U and i ≥ 1.

Example 2.3.4. An example of a coclean extension from Gm to A1 is

N = (∂ − λ/x)DGm\DGm

for λ ̸∈ Z, because j∗N is simple. An example of a non-coclean extension is
IC(ΩGm) = ΩA1 because j∗ΩGm = C[t, t−1]ΩA1 .

Example 2.3.5. Let X be n distinct straight lines in the plane A2 passing through
the origin. For example, n distinct lines spanned by the matrix(

1 1 1 . . . 1 1 0

0 1 2 . . . n− 3 n− 2 1

)
,

every other n distinct straight lines in the plane A2 passing through the origin is
obtained by the span of a matrix is the a suitable linear transformation of this
one. Recall that the pushforward functor for singular varieties is inherited from the
pushforward functor for the ambient smooth varieties. Let i◦ j be the inclusion map
from U to A2, where j is the open embedding from U = A1\{0} → A1 and i is the
closed embedding from A1 → A2. So the pushforward is

(i ◦ j)∗N = i•(j∗N ⊗DA1
DA1→A2),

which is j∗N ⊗C C[∂y]. Since δ0 is simple as a DA1 module, if j∗N is simple, then
we will have that j∗N ⊗C C[∂y] is a simple DA1 ⊗ DA1

∼= DA2 module. Then the
intermediate extension must be the pushforward. But indeed when λ ∈ Z, j∗N ∼=
C[t, t−1]ΩA1 , and for λ ̸∈ Z, j∗N ∼= (xd − λ)DA1\DA1 . And the simple submodules
are C[t]ΩA1 and (xd− λ)DA1\DA1 respectively. We see that (d− λ/x)DGm\DGm is
still coclean and IC(ΩGm) is still not.
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Definition 2.3.6. We say M has completely non-trivial monodromy if for every
composition factor L of M which is not supported at a point, the monodromy of L
about the preimage under the normalisation map ν : X̃ → X of every non-cuspidal
singularity of X does not have 1 as an eigenvalue.

We have the following theorem:

Theorem 2.3.7. Let X be a curve and M be a regular holonomic D-module on X

with completely non-trivial monodromy. Then Exti(DX ,M) = 0 for i ≥ 1.

Proof. By Lemma 2.3.1, we only need to compute in formal neighbourhoods around
non-cuspidal singularities.

If the higher Ext groups between DX and all composition factors vanish, then by
the long exact sequence, Exti(DX ,M) vanishes for i ≥ 1. Therefore we consider L

a simple composition factor of M . Then we can take L ∼= IC(N), where N is an
integrable connection on a locally closed subset Y of an irreducible component of
suppL (see the proof of [HTT08, Theorem 3.4.2 (ii)]).

If Y is a point, then L is isomorphic to a delta module, therefore we know the Ext
groups Exti(DX , L) = 0 for i ≥ 1 by Proposition 2.1.19.

Let ν : X̃ → X be the normalisation map. By Theorem 2.1.11, we know that cuspidal
quotient morphisms preserve indecomposable objects as well as isomorphism classes
of objects. So the property of having a coclean extension is preserved under cuspidal
quotient morphisms. Since we can detect having a coclean extension locally, we see
that a simple regular holonomic D-module has a coclean extension if and only if it
has a coclean extension after pulling back to the seminormalisation. But then by
Example 2.3.5, we see the only monodromies that has the coclean extension property
are the non-trivial ones. This is equivalent to saying that, in the normalisation, all
monodromies around all preimages of singularities are nontrivial.

Hence by Proposition 2.1.5 and Corollary 2.1.9, we see that:

Corollary 2.3.8. The abelian subcategory of regular holonomic D-modules with
completely non-trivial monodromy over a curve maps to ordinary modules over
Diff(X) (possibly with A∞ structure). That is, the image of this abelian subcategory
has no higher cohomology under the equivalence of Proposition 2.1.5 and hence can
be identified with ordinary modules over Diff(X) by Corollary 2.1.9.

These are not the only D-modules mapping to ordinary modules over Diff(X), e.g.,
j∗Ω maps to ordinary modules over Diff(X), but the latter doesn’t live in the abelian
subcategory, as Ker(j∗M → δn) = IC(X) does not map to an ordinary D-module.
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Remark 2.3.9. We also expect the converse of the previous theorem to be true
for M simple, i.e., Ext≥1(DX ,M) = 0 with M regular holonomic implies that M

has completely non-trivial monodromy. However, if f : W → X is the map from
W = n-lines intersection at the origin to X, since the f !DX is not DW , the local
calculation doesn’t go through. The module f !DX should look like DX←W , but since
X is not cuspidal, we cant apply the machinery from [BN04]. For a general cuspidal
quotient morphism f : X → Y , the vanishing of Ext>0(DX , f !M) does not appear
to imply Ext>0(DY ,M) vanishing. (However, as discussed above, if X is smooth,
or more generally Y is cuspidal, then Ext>0(DY ,M) = 0 for all D-modules M on
Y .) Note that f !DX is not projective because if it is then Ext1(DX ,M) = 0 for X

n-straight line intersecting at the origin and M the trivial module.

2.3.2 Planar multicross singularity case

We take a formal neighbourhood U∧ at each singular point of a curve X, and we
take its normalisation map Ũ∧ ↠ U∧. Since Ũ∧ is a normal 1 dimensional, therefore
it is smooth. But a regular local complete 1 dimensional ring must be isomorphic to
C[[x]]. So, each connected component of Ũ∧ must be of this form. The normalisation
map will factor through the bijective map Z := SpecC[[x]] ⊗C · · · ⊗C C[[x]] → U∧,
where C[[x]] ⊗C · · · ⊗C C[[x]] is the fibered coproduct and it is the coordinate ring
of the n axes in An. This map is a universal homeomorphism and the source is
the seminormalisation U∧sn. Therefore, a seminormal curve is precisely one whose
singularities formally locally look like coordinate axes in an affine space. This is
known as multicross singularity in the literature, see [LV81].

There is another map from the n axes in An (which we named Z) to n distinct
(straight) lines in the plane A2 (which we are going to call W ), c.f. Example 2.3.5.

Thus by Proposition 2.1.14, we have:

Lemma 2.3.10. There is a derived equivalence between D-modules on Z and D-
modules on W .

Remark 2.3.11. We stress that these equivalences are not isomorphisms of (DG)
rings.

Therefore, up to derived equivalence, we can understand the Ext-algebra locally by
the next proposition:

Proposition 2.3.12. Let X be a curve such that X is formally locally equivalent to
n-lines intersecting in a plane for each non-cuspidal point. If M is a simple regular
holonomic D-module on X, then Ext1(DX ,M) = 0 if and only if M has non-trivial
monodromy about each non-cuspidal singularity or M is supported at a point.
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Proof. Recall that the support of a sheaf is a closed subset, and that M is simple
implies the support M is irreducible. The irreducible closed subsets of n-lines in-
tersecting at the origin are either a point or a copy of A1. Therefore, IC(ΩGm),
IC((d − λ/x)DGm\DGm) and delta modules are the only possible simple regular
holonomic modules on A1. By Proposition 2.1.19 we know the Ext group vanishes
for delta modules.

We can explicitly write down a concrete basis of Ext1(DW ,M) in the case of M equals
IC(ΩGm) or IC((d−λ/x)DA1\DA1), for λ ̸∈ Z, when W is n-lines intersecting at the
origin, c.f. Example 2.3.5. Recall by Formula 2.2.1, we have Ext1(DW ,M) = M/Mf ,
where f is the defining equation of W in A2.

For N = ΩGm , we see M = IC(N) = C[x]⊗C C[∂y], viewed as a right module. The
multiplication on the right is done component-wise, with the standard action on the
x-part and ∂p

y ·y = p∂p−1
y . So, applying multiplication by x increases the exponent in

the first coordinate and applying multiplication by y decreases the exponent in the
second coordinate. Say f = y(x+α1y) · · · (x+αn−1y), αi ∈ C distinct. To calculate
Ext1(DX ,M), we need to calculate Mf , the image. Clearly applying multiplication
by y is a surjection, and applying multiplication by x + αiy is not a surjection and
the image misses a copy of C⊗C C[∂y] in IC(N) = C[x]⊗C C[∂y]. Thus, we see that
Ext1(DX ,M) has a basis ⟨1, x, . . . , xn−2⟩ ⊗C C[∂y], which is non-zero if n > 1 (i.e.
it is not cuspidal).

For N = (d − λ/x)DGm\DGm , λ ̸∈ Z, we see M = IC(N) = (xd − λ)DA1\DA1 ⊗C

C[∂y], which equals C[xλ] ⊗C C[∂y] as a vector space where C[xλ] is the C-span of
{. . . , xλ−1, xλ, xλ+1 . . . } infinite in both directions. Therefore, applying multiplica-
tion by x and y is surjective. Therefore, we have that Ext1(DX ,M) = M/Mf =

0.

The examples include the nodal curve C[x(x − 1), x2(x − 1)] ⊂ C[x]; in this case
X = Xsn, and the induced map from the intersection of 2 lines in a plane to X is
formally locally an isomorphism. In fact, every planar-multicross must be formally
locally of this form. It does not include examples like formally locally non-transverse
intersections.

More generally, we can globalise to get the following theorem:

Theorem 2.3.13. Given a curve X, there is another curve Xpl, whose singularities
are all formally locally lines intersecting in a plane, and whose category of D-modules
is derived equivalent to that of X.

Therefore there is a zigzag diagram
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Xsn

X Xpl,

where each arrow is a universal homeomorphism and thus gives a derived equivalence
of D-modules and the category is ‘nicer’ to study in Xpl.

Proof. At each singular point pi ∈ Xsn and Ui such that pi ∈ Ui, we have O((̂Ui)pi)
∼=

C[[xi,1]]⊕ · · · ⊕ C[[xi,ni ]]. Then by Nakayama’s lemma we pick Ui small enough such
that ∃yi,1, . . . , yi,ni ⊂ O(Ui) generate O(Ui) with yi,j ≡ xi.j (mod mi

2). This is true
because the statement is true in O(Ui)p and we can pick Ui small enough that yi,j

extend to Ui and generate. Define Xpl := (Xsn,Opl), where Opl ⊂ Osn is a sheaf
of rings, defined by f |Ui ∈ Opl(Ui) if f |Ui ∈ C⟨yi,1 + · · · + yi,ni−1, yi,2 + · · · + (ni −
2)yi,ni−1+yi,ni⟩ ⊂ O(Ui)

sn for all i, the subalgebras generated by these two elements
(we are using the matrix at the beginning of this section); along with the open set
covering the smooth part, this satisfies the sheaf condition. We need to check that
U sn
i \{pi} ∼= Upl

i \{pi}, i.e. O(Ui\{pi}) is generated by yi,1 + · · ·+ yi,ni−1, yi,2 + · · ·+
(ni − 2)yi,ni−1 + yi,ni And there is a universal homeomorphism from Xsn to Xpl.
This is true because the singular locus of Ui is just pi and ∀q ∈ Ui\{pi}, ∃i such that
y′i,j(q) ̸= 0, then by Nakayama’s lemma every local neighbourhood in Ui is generated
by yi,j , so O(Ui\{pi}) is also generated by them. By construction Xpl is formally
locally n curves meeting transversely in a plane, Zariski locally some of these curves
could coincide.

Fix this?

2.4 Holonomic D-module on isolated quotient singulari-
ties

Let X = V/G be the quotient of a smooth variety V by a finite group G acting
linearly. In this section, we calculate the image of holonomic D-modules of X under
our canonical map D(D-modX) → D(REnd(DX)-mod) in Proposition 2.1.5. We
need to calculate Ext>0(DX ,M). By Lemma 2.3.1, it suffices to show vanishing in
a formal neighbourhood of an isolated singularity. Therefore we can assume V is
the affine space An. In particular, we will see that intermediate extension of the
D-module ΩX can be viewed as an ordinary module over the Grothendieck ring of
differential operators Diff(X). The intermediate extension of nontrivial local systems
L on U = X\{0} where G acts freely away from the origin, have non-vanishing
ExtdimV−1(DX , IC(L)). This is completely opposite to the curve case.

Let π : V → X be the quotient map. The strategy is the following: we first study the
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fundamental exact triangle associated to the intersection cohomology D-module and
compute its cone just as we did in Section 2.3 (cf. Lemma 2.4.6). Using this, we can
compute π! IC(N) (cf. Proposition 2.4.7). Finally, using equivariant-adjunction, we
can compute Exti(DX , IC(N)) (cf. Theorem 2.4.8). The results can be globalised,
(cf. Remark 2.4.10).

Recall that a pseudo-reflection is an invertible linear transformation g : V → V

such that the order of g is finite and the fixed subspace V g has codimension 1. The
Chevalley–Shephard–Todd theorem [Che55] says:

Theorem 2.4.1. For x ∈ V = An, let Gx ⊂ G be the stabilizer of x. Then the
quotient X is smooth at Im(x) if and only if Gx is generated by pseudo-reflections.

Suppose that K is the subgroup generated by pseudo-reflections (it is a normal
subgroup). Then V/K is smooth by the above theorem. Since X = V/G =

(V/K)/(G/K), where V/K is smooth and is isomorphic to V , we can assume with-
out loss of generality that G contains no pseudo-reflections. We can also assume
dimV ≥ 2 as otherwise we recover the curve case.

For each point in the free locus Ũ , the stabilizer is trivial, therefore the condition of
Theorem 2.4.1 is satisfied. Thus the quotient of the free locus is smooth. And the
singular locus is exactly the image of the complement of the free locus and it has
codimension at least 2 by assumption. Let U be the smooth locus, the image of Ũ .
As G contains no pseudo-reflections, locally this is a smooth covering map, we see
that π!DU = DŨ and π!ΩU = ΩŨ .

Lemma 2.4.2. Diff(X) ∼= Diff(V )G

(Apparently is a theorem by [Kan77], we don’t really use this any place other than
another remark, and our proof is kind of hand wavy, should we just cite this instead?)
Ask Travis

Proof. Every differential operator on X = V/G gives a G-invariant differential oper-
ator on Vfree, which by taking principal symbol gives a section of Symm TVfree . As G

contains no pseudo-reflections, by Hartogs’ theorem, these sections extend uniquely
to Symm TV , that is, principal symbols of differential operators in Diff(V )G. There-
fore by induction on m, we can conclude the lemma.

The next lemma was first proved in [ES09, Lemma 2.9] by considering the induction
functor Ind from O-modules to right D-modules on any algebraic variety and noting
that π∗ ◦ Ind = Ind ◦ π∗ for all proper morphisms π (this follows from the two
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adjunctions Ind ⊣ Res and π∗ ⊣ π!). Here we give a more direct proof. Note that
neither proof uses the assumption that G contains no pseudo-reflections.

Lemma 2.4.3. For X = V/G, DX = (π∗DV )
G.

Proof. Choose an embedding i : X → Y , we write π′ for i ◦ π. We can compute

(π′∗DV )
G = π′•(DV→Y )

G

= π′•(O(V )⊗O(Y ) DY )
G

= π′•(O(V )G ⊗O(Y ) DY )

= IX\DY

= i∗DX .

Lemma 2.4.4. If G contains no pseudo-reflections then

Γ(V, π!DX)G ∼= Γ(V,DV )
G.

Proof. From the previous lemma we can conclude that

Hom((π∗DV )
G, DX) = Hom(DX , DX) = Diff(X),

by Theorem 2.1.9. The right hand side equals Diff(V )G = Hom(DV , DV )
G when G

contains no pseudo-reflections. By adjunction, the left hand side also equals

Hom((π∗DV )
G, DX) ∼= Hom(DV , π

!DX)G.

Using Γ(V,−) ∼= Hom(DV ,−) we conclude the lemma.

In the following we assume X = V/G has an isolated singularity.

We begin the calculation of the Ext groups. This requires a few steps:

First we generalise [ES09, Lemma 4.3] slightly to include all topological local systems.

Lemma 2.4.5. Let X be an irreducible affine variety of dimension d with a C∗-
action having a unique fixed point 0, which is attracting (i.e., X is a cone). Let
U = X\0. Assume that U is smooth. Let j : U → X be the corresponding open
embedding and L a C∗-equivariant topological local system on U . make sure this
condition is what we need Then, for m > 0,

Extm(IC(L), δ) = Extm(δ, IC(D(L))) = Hd−m
dR (U,L)∗
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We include a proof for completeness. Our proof is essentially the same as the proof
in [ES09].

Proof. The first equality follows from Verdier duality and that the D-module δ is
self dual and D(IC(L)) ∼= IC(D(L)) [HTT08, Proposition 3.4.3].

Let i : 0 ↪→ X be the closed embedding. For the second equality we have

Extm(δ, IC(D(L))) ∼= Extm(i∗C, IC(D(L)))
∼= Extm(C, i! IC(D(L))) adjunction
∼= Extm(D(i! IC(D(L))),C) Verdier duality
∼= Extm(i∗D IC(D(L)),C)
∼= Extm(i∗ IC(L),C) [HTT08, Proposition 3.4.3]
∼= H−m(i∗ IC(L))∗

Consider the standard exact triangle

IC(L) → j∗L → C →,

where C ∼= i∗i
! IC(L)[1]. We know that IC(L) is concentrated in degree 0 and j∗L

is concentrated in non-negative degrees. Note that IC(L) → H0j∗L is injective as
IC(L) is the image of canonical morphism H0j!L → H0j∗L from the adjunction by
definition. By considering the long exact sequence we see that C is also concentrated
in non-negative degrees and supported at 0. Applying i∗ to this triangle, we obtain

i∗ IC(L) → i∗j∗L → i∗C → .

By Kashiwara’s theorem, since C is supported at 0, i! is exact on C. Thus i∗C =

Di!DC is also concentrated in non-negative degrees.

We claim that i∗ IC(L) is concentrated in negative degrees. Note that as i! of a D-
modules concentrated in degree 0 is concentrated in non-negative degrees [HTT08,
Proposition 1.5.14], we only need to prove i∗ IC(L) is not concentrated in degree
0. Suppose not, then there is a map i∗ IC(L) → δ which is non-zero in degree
zero. By adjunction, this gives a map IC(L) → δ which is non-zero in degree zero,
but this is impossible. Hence by the long exact sequence of homology, we see that
H−m(i∗ IC(L)) ∼= H−m(i∗j∗(L)).

Since X is conical and L is equivariant, this is naturally isomorphic to Hd−m(X, j∗(L)),
hence isomorphic to Hd−m(U,L). ref?
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Recall we have the following diagram:

Ũ V {0}

U X •

j̃ ĩ

j i

π|
Ũ π id

With the same setup as the previous lemma, we have:

Lemma 2.4.6. The cone C in the exact triangle IC(L) → j∗L → C → is isomorphic
to δ ⊗C Hd−1−∗(U,L), where d is the dimension of X and δ is the delta module
supported at the singularity (i.e., δ = i∗(C)). When L is the trivial local system
ΩU , then K ∼= δ[1− d], and when L is non-trivial, j∗L = IC(L), i.e., it is a coclean
extension.

Proof. The exact triangle IC(X) → j∗L → C → induces the exact sequence

Extm(δ, j∗L) → Extm(δ, C) → Extm+1(δ, IC(L)) → Extm+1(δ, j∗L),

and we have
Extm(δ, j∗L) ∼= Extm(j!δ, L) = 0

for all m as j!δ = 0. Therefore

Extm(δ, C) ∼= Extm+1(δ, IC(L)) ∼= Hd−m−1
dR (U,L)∗.

Since C is concentrated at the singularity, it is a direct sum of δ’s, so Extm(δ, C)

gives the multiplicity of δ[−m] in C (for m ≥ 0). Therefore K ∼= δ⊗CHd−1−∗(U,L).

Note G is finite and we have the following fibration

G Ũ

U

Since Ũ ∼ S2d−1 (homotopic), by Leray–Serre spectral sequence [Wei94, Theorem
5.3.2], we have a spectral sequence

Hp(U,Hq(G,C)) =⇒ Hp+q(Ũ).

Note that here Hq(G,C) is the cohomology of G as a topological group, not the
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group cohomology of G. As G is finite, we have Hq(G,C) = C[G] concentrated in
degree q = 0. Hence the spectral sequence degenerates and we have:

Hp(U,C[G]) ∼= Hp(S2d−1).

Decomposing C[G] as
⊕

irreps Vi
V ⊕dimVi
i where the 1 dimensional representations

gives the local systems. In particular, since Hp(S2d−1) = 0 for 0 < p < 2d−1,we see
that Hp(U,L) for 0 < p < 2d− 1 and for all local systems N . And for H0(U,L), it
is C if L is trivial and 0 is L is non-trivial. This implies, for the trivial local system,
K ∼= δ[1− d]. For non-trivial local systems, K = 0, hence j∗L = IC(L), i.e., it is a
coclean extension. Can compute top cohomology as well, but not necessary. Check
with Travis if this is OK.

Still keeping the same setup:

Proposition 2.4.7. π! IC(X) = ΩV and π! IC(L) = j∗ΩŨ for L a non-trivial C∗-
equivariant simple topological local system.

Proof. For the second statement, we use the fact that it is a coclean extension, the
base change formula and the fact that π1(Ũ) = {e}:

π! IC(L) = π!j∗L = j̃∗π|Ũ
!L = j̃∗ΩŨ .

For the first statement, note that we have an exact triangle

π! IC(X) → π!j∗ΩU → π!C → .

Base change formula implies

π!j∗ΩU
∼= j̃∗π|Ũ

!ΩŨ
∼= j̃∗ΩŨ .

Let C̃ be the cone of
IC(V ) → j̃∗ΩŨ → C̃ →,

and C̃ ∼= ĩ∗ĩ
! IC(V )[1], where ĩ is the inclusion map from the origin to V a vector

space and IC(V ) ∼= ΩV (see, for example, [Bra+, Example, page 65]). This implies
that C̃ ∼= δ̃[1 − d], where δ is the delta module supported at the preimage of the
isolated singularity (i.e., δ = ĩ∗(C). Here we are abusing the notations of delta
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modules on X and V ). Using the base change formula we see that

π!C = π!i∗(C) ∼= ĩ∗id!(C) = C̃.

In other words, we have two exact triangles

π! IC(X) → j̃∗ΩŨ → C̃ →

and
ΩV → j̃∗ΩŨ → C̃ → .

The two triangles (and in particular the objects π! IC(X) and ΩV ) are determined
up to isomorphism by the morphisms j̃∗ΩŨ → C̃, although not always up to a
unique isomorphism. If we can show Hom(j̃∗ΩŨ , C̃) = C and that the two maps of
j̃∗ΩŨ → C̃ are non-zero, then we are done.

We first compute Hom(j∗ΩŨ , C̃). The triangle

ΩV → j̃∗ΩŨ → C̃

induces

Exti−1+d(δ, δ) → Exti(j̃∗ΩŨ , δ) → Exti(ΩV , δ) → Exti+d(δ, δ).

Note Exti(δ, δ) = C if i = 0 and 0 otherwise, and

Exti(IC(V ), δ) ∼= Exti(δ, IC(V )) ∼= Hd−i
dR (Ũ) ∼= Hd−i

dR (S2d−1)

for i > 0. So Exti(j∗ΩŨ , δ) = C if i = d or i = −d + 1, i.e., RHom(j∗ΩŨ , C̃) ∼=
C⊕ C[2d− 1]. In particular Hom(j∗ΩŨ , C̃) = C.

We need to show that the two arrows of j∗ΩŨ → C̃ are non-zero. The map j∗ΩŨ → C̃

of the second triangle is non-zero as otherwise it will imply that ΩV
∼= j∗ΩŨ ⊕ δ[−d]

which is impossible.

For the first triangle, note that IC(X) is indecomposable implies that the map
j∗ΩU → C is non-zero. As the map j∗ΩŨ → C̃ is the image of j∗ΩU → C under
π! : Hom(j∗ΩU , C) → Hom(π!j∗ΩU , π

!C), it suffices to show that π! is an injec-
tion between the Hom sets. By adjunction this is identified with Hom(j∗ΩU , C) →
Hom(π!π

!j∗ΩU , C), composing with the natural map π!π
!j∗ΩU → j∗ΩU . But

π!π
!j∗ΩU = π!j̃∗ΩŨ = π∗j̃∗ΩŨ = j∗π|Ũ ∗

ΩŨ = j∗(
⊕

L),

summing over all rank one local systems L on U and where the penultimate equality
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follows from commutavity of the diagram. Under this identification, π!π
!j∗ΩU →

j∗ΩU becomes the projection map j∗(
⊕

L) → j∗ΩU , which is the only non-zero map
up to scaling. Since this is a projection map, we obtain that π! is indeed an injection
between the Hom sets.

For a vector space W with a group G acting on it, denote WG,⊥ := Ker(W ∗ →
(WG)∗) = (W/WG)∗.

Theorem 2.4.8. Let L be a C∗-equivariant local system on U , then

Extm(DX , IC(L)) ∼= (Γ(V, δ)⊗ (Hd−m−1
dR (Ũ , π!DL)G,⊥))G

for m > 0. In particular, we have that Ext•(DX , IC(X)) is concentrated in degree 0.

Proof. Since for any D-module M on X, we have

j̃∗π!M = π!
|Ũ
j∗M = j̃∗H0π!M,

where we used j∗ and π!
|Ũ

are exact. We have the following diagram

π!M j̃∗j̃
∗π!M ĩ∗ĩ

!π!M [1]

H0π!M j̃∗j̃
∗π!M ĩ∗ĩ

!H0π!M [1] .

∼

As Ext>0(DV , π
!M) = R>0Γ(cone(H0π!M → π!M)), from the diagram it follows

that Ext>0(DV , π
!M) = R>0Γ(cone(̃i∗ĩ!H0π!M → ĩ∗ĩ

!π!M)).

In the case when M = IC(L), where N is a holonomic D-module on U , we know that
Hmi!M ∼= Hd−m(U,DL)∗ for m ≥ 0 from the fact that H−mi∗M ∼= Hd−m

dR (U,L) (cf.
Lemma 2.4.5). Therefore, as i!δ = C and either IC(π!L) = H0π!M or H0π!M is an
extension of IC(π!L) by δ, we see that Hmĩ!H0π!M ∼= Hd−m

dR (Ũ , π!DL)∗ for m > 0.
Using H−mdR (U,DL)∗ = Hd−m

dR (Ũ , π!DL)G∗, we see that for m > 0,

Extm(DX , IC(L)) ∼=ΓHmcone(̃i∗ĩ!H0π!M → ĩ∗ĩ
!π!M)G

∼=ΓHmcone(̃i∗ĩ! IC(π!L) → ĩ∗π
!ĩ! IC(L))G

∼=(Ker(Hd−m
dR (Ũ , π!DL)∗ → Hd−m

dR (Ũ , π!DL)G∗)[1]⊗ Γ(V, δ))G

∼=(Γ(V, δ)⊗ (Hd−m−1
dR (Ũ , π!DL)∗/Hd−m−1

dR (U,DL)∗))G

∼=(Γ(V, δ)⊗Hd−m−1
dR (Ũ , π!DL)G,⊥)G.
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Note that Hm
dR(Ũ , π!L)∗ = Hm

dR(U,L)
∗ if and only if G acts trivially on Hm

dR(Ũ , π!L).
Therefore we see that for the trivial local system, Ext>0(DX , IC(X)) = 0.

Corollary 2.4.9. Ext•(DX , IC(X)) is concentrated in degree 0, and Ext•(DX , IC(L))

is concentrated in degree 0 and d− 1.

Proof. Since Ũ is homotopic to S2d−1, and π!L is the trivial local system on which
G acts by a character, we get that H<d

dR (Ũ , π!DL) is concentrated in degree zero and
the G action there is given by the inverse of the character by which G acts on L.
This shows that for the trivial local system, the higher Ext groups are always zero;
for a non-trivial local system, the higher Ext groups are non-zero in the d− 1 degree
and equals to Γ(V, δ)χ, where χ is the character by which G is acting on L.

By Proposition 2.4.7, we see that Ext0(DX , IC(X)) = (ΩV )
G for the trivial local

system and Ext0(DX , IC(L)) = Γ(Ũ ,ΩŨ )χ (where χ is the defining representation
for L) for a non-trivial simple topological local system L.

Hence we see that the holonomic D-modules can be viewed as a Diff(X) module via
our correspondence if at the singularity, either the local system has no monodromy,
or it pulls back to a local system on V which is nontrivial at the preimage of the
singularity. This includes IC(X), but excludes IC(L) for non-trivial simple local
systems.I am confused about this sentence and its logic

This is the complete opposite to the case of curves in the Section 2.3.

Remark 2.4.10. The above calculation can be globalised to the following. Suppose
now L is a local system on a locally closed subset Z ⊂ X = V/G where V now is a
general variety such that X has isolated singularities. Let Zx := Z ∩Bx, where Bx is
a small analytic ball around x ∈ X. Furthermore, let Z̃x be a connected component
of π−1(Zx). Then the above calculation also shows that

Extm(DX , IC(L))x ∼= Hd−m−1Γ(Z̃x, π
!(DL))G,⊥,

for m > 0 and G = π1(Zx)/π1(Z̃x), which is 0 if and only if Hd−m−1Γ(Zx,DL) ↪→
Hd−m−1Γ(Z̃x, π

!DL) is surjective. If L has regular singularity at x, this happens if
and only if Lπ1(Zx) ∼= Lπ1(Z̃x), i.e., G = π1(Zx)/π1(Z̃x) acts trivially on Lπ1(Z̃x).

Therefore:

• if dim(Z) ≤ 1, then Ext>0(DX , IC(L)) = 0;
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• if dim(Z) ≥ 2, in general the higher Ext can be complicated. However, if
the closure Z̃x is a local complete intersection, for each singular point x and
X only consists regular singularities, then Extm(DX , IC(L)) = 0 for 1 ≤ m ≤
dim(Z)−2 as the link at an isolated complete intersection singularity is (d−2)-
connected.

Remark 2.4.11. The canonical D-module M(X) of Etingof–Schedler [ES09] is a
local enhancement of Poisson homology of X. When X = V/G where G is a finite
subgroup of Sp(V ) and X has isolated singularities, M(X) is isomorphic to a direct
sum of intermediate extensions of trivial local systems on each stratum, see [ES09,
Corollary 4.16]. We deduce that M(X) can be seen an ordinary D-module over
Diff(X). This includes the Du Val case.

We can also do a similar calculation to deduce the structure of Ext•(DX , DX):

Proposition 2.4.12. The cohomology of the DG algebra REnd(DX) is given by

Ext•(DX , DX) ∼= Diff(V )G
⊕

(⟨(1− g) · Γ(V, δ)⟩g∈G ⊗ Γ(V, δ))G[1− d].

Proof. Note we have the diagram

π!DX j̃∗j̃
∗π!DX ĩ∗ĩ

!π!DX [1]

H0π!DX j̃∗j̃
∗π!DX ĩ∗ĩ

!H0π!DX [1] .

∼

Also, we have H0π!DX
∼= DV . Indeed, as DV

∼= H0j∗j
∗H0π!DX , we have by

adjunction, a map H0π!DX → DV . This map is injective as the kernel is concen-
trated at the origin and Hom(δ,H0π!DX) = Hom(δ,DX) = Hom(δ,DV )

G = 0. As
Ext1(δ,M) = 0 and DV is indecomposable, we see this map has to be surjective too.

Furthermore,

i!DX
∼=RHom(C, i!DX)

∼=RHom(δ, (π∗DV )
G)

∼=RHom(DDV , π
!δ)G

∼=RHom(π∗δ,DV )
G

∼=(i!DV )
G

∼=Γ(V, δ)G[−d].
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Therefore,

Extm(DX , DX) ∼= ΓHmcone(H0π!DX → π!DX)G

∼= ΓHmcone(̃i∗ĩ!H0π!DX → ĩ∗ĩ
!π!DX)G

∼= ΓHmcone(̃i∗ĩ!DV → ĩ∗π
!i!DX)G

∼= Hm−d(Ker(Γ(V, δ) → Γ(V, δ)G)[1]⊗ Γ(V, δ))G

∼= Hm−d+1(⟨(1− g) · Γ(V, δ)⟩g∈G ⊗ Γ(V, δ))G,

for m > 0. Adding Ext0(DX , DX) ∼= Diff(X) yields the result.

Remark 2.4.13. Note that π!DX ̸∼= DV (but H0π!DX
∼= DV ). Indeed suppose

π!DX
∼= DV , then

Ext•(π!DX , π!DX)G ∼= Ext•(π∗DV , DX)G ∼= Ext•(DX , DX)

which is not concentrated in degree zero, but REnd(DV )
G is.

Remark 2.4.14. The proposition implies that any Kleinian singularity X has non-
vanishing Ext1(DX , DX), hence they are not cuspidal.

Remark 2.4.15. For M = IC(Lχ) where Lχ is a simple non-trivial topological local
system, the

Extd−1(DX , DX)× Ext0(DX , IC(Lχ)) → Extd−1(DX , IC(Lχ))

action becomes

(⟨(1− g) · Γ(V, δ)⟩g∈G ⊗ Γ(V, δ))G × Γ(V,OŨ )χ → (Γ(V, δ)⊗H−ddR (Ũ , π!DLχ)
G,⊥)G.

Note we have H−ddR (Ũ , π!DLχ)
G,⊥ = χ. On the subrepresentation χ ⊂ Γ(δ)G,⊥, this

action is induced by applying distributions to functions χ⊗OŨ → χ, and the action
is zero elsewhere.

Remark 2.4.16. We conjecture that it might be possible to unify Section 2.3 and
Section 2.4. In some sense, both sections are dealing with computing a cone of the
form H0π!M → π!M on C for a finite map π : Y → X, then reducing to X. In
Section 2.3, the map was the normalisation map; in this section, the map is a quotient
by a finite group G and the reduction process is taking G-invariants.
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Chapter 3

Hochschild–de Rham Homology

3.1 Hochschild–de Rham Homology

Assume throughout this chapter that X is affine and Oℏ(X) is a quantisation of
O(X). Recall from the introduction that

M(X) := (HamX)\DX .

Because of the bi-differential operator assumption on our star product, we can also
define the following quantised version of M(X):

Definition 3.1.1. Let X → V be a closed embedding into a smooth affine variety.
Define

Mℏ(X) := (Hamℏ,X)\DX [[ℏ]],

where DX is viewed as before, DX [[ℏ]] is viewed as a DV [[ℏ]]-module and the (right)
submodule (Hamℏ,X) is spanned by ‘quantum Hamiltonian operators’ ξℏ,f , where for
f ∈ Oℏ(X), ξℏ,f ∈ Diff(X)[[ℏ]] is defined by

ξℏ,f (g) =
1

ℏ
[f, g]⋆,

where g ∈ O(X) and [·, ·]⋆ is given by the commutator of ⋆. It acts on the left on
DX [[ℏ]] since Diff(X) acts on the left on DX (by endomorphisms). This makes sense
because ⋆ is commutative mod ℏ.

It is possible to define a suitable category of formal families of D-modules on X and
then Mℏ(X) is an object there which is independent of the embedding.

Remark 3.1.2. In fact we may define a relative version of Mℏ(X). Let ϕ : X → Y
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be a morphism of affine varieties and Oℏ(X) a deformation quantisation on X. Define

Mℏ(X,ϕ) :=
DX [[ℏ]]

ad⋆(ϕ∗(O(Y )))DX [[ℏ]]
,

where ϕ∗(O(Y )) is realised as a subalgebra of Oℏ(X).

Clearly, when ϕ is the identity map, we arrive at our original definition of Mℏ(X).

We now relate our D-module Mℏ(X) to Hochschild homology of the quantisation.
Let p : X → SpecC and M a D[[ℏ]]-module on X. Fix a closed embedding i :

X → V into a smooth affine variety V with the defining ideal IX , then denote
p∗M = M ⊗L

DV [[ℏ]] O(V )[[ℏ]] the D-module-theoretic pushforward for formal families.

Notice that HH0(Oℏ(X)) is a C[[ℏ]]-module, the following lemma realises H0p∗Mℏ(X)

as a submodule of HH0(Oℏ(X)).

Lemma 3.1.3.

H0p∗Mℏ(X) ∼= ℏ−1[Oℏ(X),Oℏ(X)]\Oℏ(X) ∼= ℏ ·HH0(Oℏ(X)) ⊂ HH0(Oℏ(X)),

and
H0p∗Mℏ(X)[ℏ−1] ∼= HH0(Oℏ(X)[ℏ−1]).

Proof. For the first statement:

H0p∗Mℏ(X) =Mℏ(X)⊗DV [[ℏ]] O(V )[[ℏ]]
∼=Hamℏ,X \DX [[ℏ]]⊗DV [[ℏ]] O(V )[[ℏ]]

∼=
1

ℏ
[O(X)[[ℏ]],O(X)[[ℏ]]]⋆\O(X)[[ℏ]]

∼=[O(X)[[ℏ]],O(X)[[ℏ]]]⋆\ℏO(X)[[ℏ]]
∼=ℏ ·HH0(Oℏ(X)),

where in the penultimate step we used the fact that the multiplication map Oℏ(X)
ℏ·−→

ℏO(X)[[ℏ]] is an isomorphism of C[[ℏ]]-modules. The second statement also follows.

We now proceed to define the Hochschild–de Rham homology, following the idea of
Poisson-de Rham homology in [ES09].
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Definition 3.1.4. We define

HHdR
i (Oℏ(X)) := H−ip∗Mℏ(X).

Note that Mℏ(X) has a natural decreasing filtration

· · · ⊂ ℏ2Mℏ(X) ⊂ ℏMℏ(X) ⊂ Mℏ(X),

with F iMℏ(X) := ℏiMℏ(X).

Recall that given any filtration F • of M , we can topologise M by taking cosets m+F i

for all m ∈ M and i ∈ I as basic open sets.

Definition 3.1.5. We say M is Hausdorff if M is Hausdorff in this topology. This
is equivalent to {0} is closed in M . The closure of {0} is

⋂
i F

iM , thus Hausdorff is
equivalent to

⋂
i F

iM = 0. Assuming M is Hausdorff, we say M is complete if every
Cauchy sequence in M has a limit.

An equivalent formulation of the above is if we look at the map ι : M → M̂ from
M to its completion, ι is an injection (respectively, isomorphism) if and only if M is
Hausdorff (respectively, complete). See [AM69, Chapter 10].

Remark 3.1.6. (Different versions of the Hochschild–de Rham homology)

It is then perhaps more natural to define Mℏ(X) as the quotient of DX [[ℏ]] by
(Hamℏ,X) the closure of the submodule (Hamℏ,X) with respect to the ℏ-adic topology.
Call this version Mℏ(X).

It follows that:

Lemma 3.1.7.
Mℏ(X) = Mℏ(X)/

⋂
m

ℏmMℏ(X).

Proof. Indeed, this is because

P ∈ (Hamℏ,X) ⇐⇒ for all m ≥ 0,∃Pm ∈ (Hamℏ,X) such that ℏm|(P − Pm),

⇐⇒ for all m ≥ 0, Im(P ) under (Hamℏ,X) ↪→ DX [[ℏ]] ↠ Mℏ(X)

satisfies ℏm| Im(P ). (∗)

The advantage is that Mℏ(X) is Hausdorff and complete (as quotient of a complete
space by a closed subspace is complete). However, we claim that this is unnecessary.
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Proposition 3.1.8. Let X be a variety and Oℏ(X) a quantisation of X, then:

1. If S is a finite set of topological generators of Oℏ(X), then

Mℏ(X) ∼= ad⋆(S)DX [[ℏ]]\DX [[ℏ]].

2. In particular, we can take S = {ℏ} ∪ S′ where S′ is any finite set of generators
of O(X). This implies Mℏ(X) ∼= Mℏ(X), that is, Mℏ(X) is already Hausdorff
and complete.

3. If T is contains O(X), then Mℏ(X) ∼= ad⋆(T )DX [[ℏ]]\DX [[ℏ]]. In particular,

Mℏ(X) ∼= ad⋆(O(X))DX [[ℏ]]\DX [[ℏ]].

Here and below, by topological generators we mean that the closure of the subring
generated by them is the whole topological ring.

Proof. If S is a finite set of topological generators of Oℏ(X), then we have

ad⋆(S)DX [[ℏ]] ↪→ ad⋆(⟨S⟩⋆)DX [[ℏ]] ↪→ ad⋆(⟨S⟩⋆)DX [[ℏ]] = ad⋆(Oℏ(X))DX [[ℏ]],

where the notation ⟨S⟩⋆ means the subring generated by S under the ⋆ product in
Oℏ(X), and the last equality follows that S is a set of topological generators and
that ad⋆ is ℏ-adic continuous. This induces

DX [[ℏ]]
ad⋆(S)DX [[ℏ]]

DX [[ℏ]]
ad⋆(⟨S⟩⋆)DX [[ℏ]]

DX [[ℏ]]
ad⋆(⟨S⟩⋆)DX [[ℏ]]

Mℏ(X).
(i) ∼(ii)

First note that

[f ⋆ g, v]⋆ =f ⋆ g ⋆ v − v ⋆ f ⋆ g

=f ⋆ (g ⋆ v)− (g ⋆ v) ⋆ f

+ g ⋆ (v ⋆ f)− (v ⋆ f) ⋆ g

=[f, g ⋆ v]⋆ + [g, v ⋆ f ]⋆,

for any f, g, v ∈ Oℏ(X). This implies that

ad⋆(f ⋆ g)(−) = ad⋆(f)(g ⋆−) + ad⋆(g)(− ⋆ f).

As we assumed that all of our star products are differential star products, this implies
that if S is a set of generators of B, then ad⋆(⟨S⟩⋆)DX [[ℏ]] = ad⋆(S)DX [[ℏ]]. Hence
the first map (i) is an isomorphism.
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As S is a finite set, there is a surjection DX [[ℏ]]n ↠ ad⋆(⟨S⟩⋆)DX [[ℏ]]. Then the fact
that the sum of closed maps is close implies ad⋆(⟨S⟩⋆)DX [[ℏ]] is closed. Hence the
second map (ii) is also an isomorphism. This proves (1).

It remains to establish a finite set of topological generators. As X is a variety, O(X) is
finitely generated under its usual (·) multiplication structure. Take S′ := {s1, . . . , sn}
to be a finite set of generators of O(X), then we claim the set S := {ℏ, s1, . . . , sn}
topologically generates Oℏ(X). Indeed, take f =

∑
i fiℏi ∈ Oℏ(X). We know that f0

is generated by si ∈ S′ under the usual product, write this as f0 = g0(S
′), where g0

consists of only (·) multiplication and addition. Switching to the ⋆ product will yield
g0⋆(S

′)−f0 ∈ ℏOℏ(X), where g0⋆ is g0 where all (·) multiplications are replaced with
(⋆) multiplications. Denote the coefficient of ℏ in g0⋆(S

′) − f0 ∈ ℏOℏ(X) to be c1,
then we can find g1 such that f1− c1 = g1(S

′) and (g0⋆(S
′)+g1⋆(S

′)ℏ)− (f0+f1ℏ) ∈
ℏ2Oℏ(X). Inductively we see that f is in the closure of S. This proves (2).

If O(X) ⊆ T , then

ad⋆(T )DX [[ℏ]] ⊇ ad⋆(O(X))DX [[ℏ]] ⊇ ad⋆(⟨O(X)⟩⋆)DX [[ℏ]] ⊇ ad⋆(Oℏ(X))DX [[ℏ]].

Hence ad⋆(T )DX [[ℏ]] = ad⋆(Oℏ(X))DX [[ℏ]]. This proves (3).

It is perhaps even more natural to define ĤH
dR

i (Oℏ(X)) to be the completion of
HHdR

i (Oℏ(X)) with respect to the ℏ-adic topology. However, we claim that this is
also unnecessary.

Proposition 3.1.9. HHdR
i (Oℏ(X)) is complete with respect to the ℏ-adic topology.

Proof. We already know Mℏ(X) is complete. Embedding X into a smooth affine
V , we can resolve O(V ) as a DV -module by the de Rham complex. Tensoring with
Mℏ(X) we have:

0 → Mℏ(X)⊗O(V )[[ℏ]]

n∧
ΘV [[ℏ]] → · · · → Mℏ(X)⊗O(V )[[ℏ]]

0∧
ΘV [[ℏ]] → Mℏ(X) → 0,

where ΘV is the sheaf of vector fields and n = dimV . The differential is given by

d(m⊗ θ1 ∧ · · · ∧ θk) =
∑
i

(−1)i+1mθi ⊗ θ1 ∧ · · · ∧ θ̂i ∧ · · · ∧ θk

+
∑
i<j

(−1)i+jm⊗ [θi, θj ] ∧ θ1 ∧ · · · ∧ θ̂i ∧ · · · ∧ θ̂j · · · ∧ θk.

As the differentials are continuous, the kernels are closed, hence complete. The
images are also closed since the maps are (alternating) sums of closed maps. This
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proves the claim.

Remark 3.1.10. In fact the same argument can be used to improve [ES17, Theo-
rem 3.4]; we can remove the requirement of finite-dimensional representations being
continuous. The proof there takes the closure [Aℏ, Aℏ], but by deploying the same
technique of Proposition 3.1.8, one can show [Aℏ, Aℏ] is already closed.

We now relate our Mℏ(X) to M(X).

Theorem 3.1.11. There is a canonical surjection

M(X)[ℏ] ↠ grℏ−adic Mℏ(X). (†)

Proof. For W ⊂ V filtered vector spaces, there is always a canonical surjection
grW\ grV ↠ gr(W\V ), therefore we have a surjection

grℏ(Hamℏ,X)\ grℏDX [[ℏ]] ↠ grℏ((Hamℏ,X)\DX [[ℏ]]).

In general for any filtered subset R ⊂ V we always have (grR) ⊂ gr(R), where (R)

means the smallest submodule containing R, therefore (HamX)[ℏ] ⊂ grℏ(Hamℏ,X)

and
M(X)[ℏ] ↠ grℏ(Hamℏ,X)\ grℏDX [[ℏ]].

Composing the two surjections completes the proof.

Remark 3.1.12. By taking the underived direct image to a point we recover

HPdR
0 (X)[ℏ] ↠ grℏHHdR

0 (Oℏ(X)) ∼= ℏ grℏHH0(Oℏ(X)).

When X is smooth symplectic, it is known in [ES09, Example 2.6] that M(X) ∼= ΩX .
We also get the same statement for Mℏ(X):

Proposition 3.1.13. If X is smooth symplectic, then Mℏ(X) ∼= ΩX [[ℏ]].

Before we prove this proposition, we need a basic well-known lemma:

Lemma 3.1.14. Let M and N be two modules with decreasing filtrations F • and G•

respectively, assume they are Hausdorff. Then if f : M → N is a filtered map such
that gr f : grM → grN is an injection of graded modules, then f is an injection. If
moreover M is complete with respect to F •, then if f : M → N is a filtered map such
that gr f : grM → grN is a surjection of graded modules, then f is a surjection.

We include a proof since we couldn’t find one in the literature.
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Proof. We deal with injectivity first. Let m ∈ M be a non-zero element, let k

be the number such that m ∈ F kM and m ̸∈ F k+1M . Such k exists because F • is
Hausdorff. Let m denote the image of m in grM , then as m is non-zero, gr f(m) ̸= 0,
which implies f(m) ̸= 0, hence f(m) ̸= 0.

For surjectivity, assume n ∈ N and let k be the number such that n ∈ GkN and
n ̸∈ Gk+1N . As gr f is surjective, there is an m ∈ F kM such that gr f(m) = n.
Then n1 := f(m)− n is in Gk+1N . Now do the same process to n1, we can find an
element m1 ∈ F k+1M such that f(m1)− n1 ∈ Gk+2N . Continuing this process, we
can write n = f(m+m1 + . . . ). As M is complete, the sum makes sense.

Proof of Proposition. Let π ∈
∧2 TX be the Poisson structure. We first construct

a map ϕ : Mℏ(X) → ΩX [[ℏ]]. As (X,π) is smooth symplectic, Dolgushev showed
that for any πh =

∑
i πiℏi with π1 = π, there exists a formal power series of top

degree forms ωℏ =
∑

i ωiℏi ∈ ΩdimX(X)[[ℏ]], starting with a nowhere vanishing form
ω0, such that Lπℏωℏ = 0 ([Dol09, Proposition 3.1]). Choose πℏ to be the canonical
formal Poisson structure according to Kontsevich’s Formality Theorem (see [Bel+16,
Chapter II, Theorem 2.3.13] and the references therein). Let Mℏ(X) → ΩX [[ℏ]] be
the map that sends 1 to ωℏ, this is well-defined because the equation Lπℏωℏ = 0

implies that diπℏωℏ = 0 and hence

ad⋆ f · ωℏ := L(ad⋆ f)ωℏ = diπℏ(df,−)ωℏ = d(iπℏωℏ ∧ df) = 0.

Since Ω is irreducible and ϕ is non-zero mod ℏ, [ES09] showed that the map DX [[ℏ]] ↠
Mℏ(X) → Ω[[ℏ]] is surjective mod ℏ. Because both modules are complete, one can
show inductively on degree of ℏ that this map is surjective. As this surjection fac-
torises through ϕ, ϕ is also surjective. To show it is injective, we consider the
associated graded map grℏMℏ(X) ↠ grℏΩX [[ℏ]]. By the aforementioned result in
[ES09], grℏΩX [[ℏ]] ∼= M(X)[ℏ]. But by Theorem 3.1.11, there is also a surjection
M(X)[ℏ] ↠ grℏMℏ(X). As the modules are finitely-generated, and surjective endo-
morphisms of finitely-generated modules over Noetherian rings are automorphisms,
they must be isomorphic. Hence ΩX [ℏ] ∼= grℏMℏ(X), and by the previous lemma,
we deduce they are isomorphic on the filtered level.

Lemma 3.1.15.
HHdR

• (Oℏ(X)) ∼= HdimX−•(X,C[[ℏ]]),

for X smooth symplectic.
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Proof. This follows from taking hypercohomology of the D-module theoretic de-
rived pushforward from X to a point of both sides of the equation in the previous
proposition and using the de Rham resolution of ΩX to resolve the right hand side.
Then isomorphism follows from Grothendieck’s theorem on de Rham cohomology
[Gro66].

Corollary 3.1.16.

HHdR
• (Oℏ(X)[ℏ−1]) ∼= HH•(Oℏ(X)[ℏ−1]),

for X smooth symplectic.

Proof. By results of Nest–Tsygan and Brylinski ([NT95, Theorem A2.1], [Bry88]),

HH•(Oℏ(X)[ℏ−1]) ∼= HdimX−•(X,C((ℏ)))),

now the corollary follows from the previous lemma.

3.2 Symplectic Resolutions

It follows that if the canonical surjection equation (†) in Theorem 3.1.11 is an iso-
morphism, we have that

HPdR
• (X)[ℏ] ∼= H•(M(X)[ℏ]⊗L

DV [ℏ] O(V )[ℏ]) ∼= H•(grℏMℏ(X)⊗L
DV [ℏ] O(V )[ℏ]).

Note that by [Wei94, Section 5.4] for spectral sequence of a filtration, the following
spectral sequence converges

Ep,q
1 = Hp+q(grℏ(Mℏ(X)⊗L

DV [[ℏ]] O(V )[[ℏ]])) ⇒p grℏH
p+q(Mℏ(X)⊗L

DV [[ℏ]] O(V )[[ℏ]]).

Here, Mℏ(X)⊗L
DV [[ℏ]] O(V )[[ℏ]] is filtered, see for example [Gal18, Lemma 3.3]. And

grℏ(Mℏ(X)⊗L
DV [[ℏ]] O(V )[[ℏ]]) ∼= (grℏMℏ(X))⊗L

DV [ℏ] O(V )[ℏ],

[Gal18, Page 11]. The reference is for R commutative.

Hence we see that:

Lemma 3.2.1. If the canonical surjection equation (†) in Theorem 3.1.11 is an
isomorphism

grℏMℏ(X) ∼= M(X)[[ℏ]],

56



then we have a Brylinski-type spectral sequence

HPdR
• (X)[ℏ] ⇒p grℏHHdR

• (Oℏ(X)).

We already know that M(X)[ℏ] ∼= grℏMℏ(X) when X is smooth symplectic. And
the spectral sequence degenerates as it can be identified with the classical Brylinski
spectral sequence.

We want to generalise the situation from symplectic smooth to symplectic resolution.
Before proving the next theorem, we first recall the definition:

Definition 3.2.2. A symplectic singularity is an irreducible algebraic variety X over
C equipped with a smooth projective resolution ρ : X̃ → X such that:

• X is normal;

• there is a non-degenerate symplectic form ωreg ∈ H0(Xreg,Ω2) on the smooth
locus Xreg ⊂ X;

• for some ( ⇐⇒ every) projective resolution ρ : X̃ → X, ρ∗ωreg extends to X̃

(possibly degenerate).

We say ρ : X̃ → X as above is a symplectic resolution if ρ∗ωreg is non-degenerate
(i.e., symplectic); we say X is conical if

1. O(X) =
⊕

n≥0O(X)n with O(X)0 = C,

2. the Poisson bracket is homogeneous of degree −l, for some l > 0.

In this case, the resolution ρ : X̃ → X lifts the C∗ action to X̃ making ρ equivariant.
See [GK04, Lemma 5.3].

In general, we always have that ρ : X̃ → X is a symplectic resolution =⇒ X is a
symplectic singularity =⇒ X has finitely many symplectic leaves. See [Kal03].

Theorem 3.2.3. Let ρ : X̃ ↠ X be a projective symplectic resolution such that

• ρ∗ΩX̃
∼= M(X),

• X has locally conical singularities.

Assume the quantisation Oℏ(X) extends to a quantisation Oℏ(X) on a (one-parameter)
formal Poisson smoothing X of X. Then M(X)[ℏ] ∼= grMℏ(X) as graded modules.
Moreover this can be strengthened to Mh(X) → M(X)[[ℏ]] ∼= ρ∗ΩX̃ [[ℏ]] is an isomor-
phism as filtered modules.
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Here and below, by X has locally conical singularities we mean that for every point
x ∈ X, there is an open neighbourhood U containing x that is conical.

Remark 3.2.4. Note the two conditions in the theorem are two separate conjectures:

• The first condition ρ∗ΩX̃
∼= M(X) has been conjectured in [ES17, Section 6]

and this has been proven in many cases (see the aforementioned reference for a
list). It is known that the conjecture fails in a particular case of quiver variety
of a quiver with loops, see [Tsv19, Remark 2.15]. However it is still conjectured
to hold for quiver varieties of quivers without loops.

• The second condition that X has locally conical singularities is automatic if
[Kal09, Conjecture 1.8] of Kaledin is true. There is so far no counterexample
to the author’s knowledge.

Proof. Consider the formal Poisson smoothing X of X, this means we have a pullback
square

X X

pt ∆t,

where the top row is a map of Poisson schemes and ∆t is the formal affine line
parameterised by t. Also consider the canonical surjection M(X)[ℏ] ↠ grℏMℏ(X),
let K be its kernel. We have the short exact sequence

0 → K → M(X)[ℏ] (†)−→ grℏMℏ(X) → 0.

Since the canonical map (†) is generically an isomorphism, the kernel K must be
supported at t = 0. Therefore if we can show M(X) is a flat family over C[[t]], then
K = 0 and hence M(X)[ℏ] ∼= grMℏ(X). Quotienting by t we will get M(X)[ℏ] ∼=
grMℏ(X).

It remains to show M(X) is a flat family over C[[t]]. Since flatness can be checked
locally, we only need to check flatness of M(Xt) at t = 0; the fibre here is just
M(X). Since all Poisson deformation are locally trivial at smooth points, on the
smooth locus of X, the module M(X) is obviously flat, hence we reduce to the case
of a cone.

The rest of the proof more or less follows from [PS17, Chapter 2], which we spell out
the details here. By [Nam05, Theorem 18], there is a simultaneous resolution X̃
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X̃ X̃

X X.

ĩ

ρ ρ̃

i

We consider two families on X, ρ̃∗ΩX̃t
and M(Xt)/K

′, where K ′ is the submodule of
elements killed by powers of t.

The D-module ρ̃∗ΩX̃t
is an ordinary module, that is, it is cohomologically concen-

trated in degree 0. Indeed, consider the short exact sequence from the universal
coefficient theorem

0 → H i(ρ̃∗ΩX̃t
)⊗C[[t]] C → H i(ρ̃∗ΩX̃t

⊗L
C[[t]] C) → TorC[[t]]1 (H i+1(ρ̃∗ΩX̃t

),C) → 0.

Lemma 3.2.5. We have that

ρ̃∗ΩX̃t
⊗L

C[[t]] C ∼= i∗ρ∗ΩX̃ ,

which has cohomology concentrated in degree 0 since ρ is semismall.

Proof.

ρ̃∗ΩX̃t
⊗L

C[[t]] C ∼= Rρ̃•(ΩX̃t
⊗L

DX̃t
DX̃t→Xt

⊗L
C[[t]] C)

∼= Rρ̃•(ΩX̃t
⊗L

C[[t]] C⊗L
DX̃t

DX̃t→Xt
)

∼= Rρ̃•(̃i∗ΩX̃ ⊗L
DX̃t

DX̃t→Xt
)

∼= ρ̃∗ĩ∗ΩX̃

∼= i∗ρ∗ΩX̃ .

The first equality follows from Rρ̃• commutes with ⊗L
C[[t]]. The third equality follows

from [Nam05, Theorem 17] that Xt is locally trivial hence flat, this also implies the
flatness of ΩX̃t

. Ask Travis if this is OK.

Continuing with the proof of the theorem. Thus we get

• TorC[[t]]1 (H i(ρ̃∗ΩX̃t
),C) = 0 for i ̸= 1 and

• H i(ρ̃∗ΩX̃t
)⊗C[[t]] C = 0 for i ̸= 0.

By consider the two term projective resolution of C, the first equation says H i(ρ̃∗ΩX̃t
)

is t-torsion free for i ̸= 1. Since ρ̃ is proper, we also know that H i(ρ̃∗ΩX̃t
) is a

coherent DX-module, hence also a coherent DX[t]-module. As for i ̸= 0, we have
that H i(ρ̃∗ΩX̃t

)[t−1] = 0 and H i(ρ̃∗ΩX̃t
)/tH i(ρ̃∗ΩX̃t

) = 0 by the second equation. If
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m1, . . . ,mn are generators of H i(ρ̃∗ΩX̃t
), they must be all torsion. Hence, there is an

integer N such that tNm1 = · · · = tNmn = 0. Therefore for i ̸= 0, tNH i(ρ̃∗ΩX̃t
) =

H i(ρ̃∗ΩX̃t
) = 0.

Hence we know ρ̃∗ΩX̃t
is concentrated in degree 0, flat and ρ̃∗ΩX̃t

⊗C[[t]] C = M(X).

Now the two flat families are isomorphic as families away from t = 0, and the fibres
at t = 0 are finite length (as ρ∗ΩX̃ is holonomic). By [Gin86, Proposition 1.1.2],
the two fibres M(X)/K ′′ where K ′′ is the image of the canonical map K ′/tK ′ →
M(X)/tM(X) = M(X) and ρ∗ΩX̃ must be isomorphic in the Grothendieck group
of holonomic D-modules on X. By our assumption, M(X) ∼= ρ∗ΩX̃ , therefore K ′′

must be zero. But, since TorC[[t]]1 (M(X)/K ′,C) = 0, the map K ′/tK ′ → K ′′ is an
isomorphism, so K ′/tK ′ = 0 as well. Since K ′[t−1] = 0, we again get that K ′ = 0

as in the case of H i(ρ̃∗ΩX̃t
) for i ̸= 0. Thus M(X) is torsion-free and hence flat over

C[[t]].

To get that Mh(X) → M(X)[[ℏ]] ∼= ρ∗ΩX̃ [[ℏ]] is a filtered isomorphism, we apply
Lemma 3.1.14 and the fact that Mℏ(X) is complete.

By applying the pushforward π∗, we easily see that:

Corollary 3.2.6. Let X and Oℏ(X) satisfy the conditions of the theorem above,
then HPdR

• (X)[[ℏ]] ∼= HHdR
• (Oℏ(X)) ∼= HdimX−•(X̃,C[[ℏ]]).

Combined with Lemma 3.1.3, we get that:

Corollary 3.2.7. If X and Oℏ(X) satisfy the conditions of the theorem above, then
there exists a short exact sequence of C[[ℏ]]-modules

0 → HdimX(X̃,C[[ℏ]]) → HH0(Oℏ(X)) → OX → 0,

where ℏ acts trivially on O(X). And HH0(Oℏ(X)[ℏ−1]) ∼= HdimX(X̃,C((ℏ))).

Proof. The first equation follows from Oℏ(X)/[Oℏ(X),Oℏ(X)]
ℏOℏ(X)/[Oℏ(X),Oℏ(X)]

∼= Oℏ(X)
ℏOℏ(X)

∼= O(X) as
C[[ℏ]]-modules. By definition the numerator is HH0(Oℏ(X)) and by Lemma 3.1.3
the denominator is HHdR

0 (Oℏ(X)), which by the previous corollary is isomorphic to
HdimX(X̃,C[[ℏ]]). As ℏ is acting on O(X) trivially, O(X)[ℏ−1] = 0.

Remark 3.2.8. One can also upgrade the conjecture of Etingof–Schedler to claim
that Mℏ(X)[ℏ−1] ∼= ρ∗ΩX̃((ℏ)) for a symplectic resolution ρ : X̃ → X and that
HHdR

i (Oℏ(X)) ∼= HdimX−i(X̃,C((ℏ))), for every quantisation.
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3.3 Holonomicity

It is known that if X has finitely many symplectic leaves then M(X) is holonomic
as a DX -module [ES09, Theorem 1.1]. We also get a similar result for Mℏ(X). To
shorten the notation, by Mℏ(X)/ℏn we mean Mℏ(X)/ℏnMℏ(X).

Proposition 3.3.1. When X has finitely many symplectic leaves, Mℏ(X)/ℏn is a
holonomic DX -module for all n.

Proof. From the canonical surjection (†), we get that

M(X)[ℏ]/ℏn ↠ (grℏMℏ(X))/ℏn

is a surjective homomorphism of D-modules. Since surjection preserves holonomicity
and (grℏMℏ(X))/ℏn ∼= grℏ(Mℏ(X)/ℏn), we see that grℏ(Mℏ(X)/ℏn) is a holonomic
D-module. Since holonomic modules are closed under extension (see [HTT08, Propo-
sition 3.1.2.]), Mℏ(X)/ℏn is also a holonomic D-module.

It is known that HH0(Oℏ(X)[ℏ−1]) is finite dimensional over C((ℏ)) and Oℏ(X)[ℏ−1]
has finitely many finite dimensional representations when X has finitely many sym-
plectic leaves by [ES09, Corollary 3.13 ]. We give a slightly different proof and
generalise to Hochschild–de Rham homology.

Theorem 3.3.2. If X has finitely many symplectic leaves then HHdR
• (Oℏ(X)) is

finitely-generated over C[[ℏ]]. In particular HH0(Oℏ(X)[ℏ−1]) is finite dimensional
over C((ℏ)) and Oℏ(X)[ℏ−1] has finitely many finite dimensional representations.

Proof. We know that

griMℏ(X) = ℏiMℏ(X)/ℏi+1Mℏ(X) ↠ gri+1Mℏ(X) = ℏi+1Mℏ(X)/ℏi+2.

Since each griMℏ(X) is holonomic (hence has finite length), there is an integer
N such that grN Mℏ(X) ∼= grN+iMℏ(X) for all i > 0. Thus π∗(grMℏ(X)) is
finitely-generated over C[ℏ] by {π∗ griMℏ(X)}i≤N . Since there is a spectral sequence
π∗(grMℏ(X)) =⇒ gr(π∗Mℏ(X)), grHHdR

• (Oℏ(X)) must also be finitely-generated
over C[ℏ]. It is a general result that if A is complete and grM is finitely generated
as a grA-module, then M is finitely generated as an A-module (see [AM69, Prop
10.24]). This proves the result.
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3.4 A conjecture on Kontsevich’s quantisation

Now assume further that X is smooth affine. The Kontsevich Formality Theorem
says that there is a L∞ quasi-isomorphism

Tpoly
L∞−−→ Dpoly,

where Tpoly := (
∧•
O(X) T

1(X))[1] is the dgla of (shifted) polyvector fields on X and
Dpoly := C•(O(X))[1] is the dgla of (shifted) Hochschild chains on X (computing
Hochschild cohomology of O(X)). The Poisson structure π is an MC element on the
left hand side, we can form the MC twisting and get an L∞ quasi-isomorphism

(Tpoly, dπ)
L∞−−→ (Dpoly, dHochℏ),

where dHochℏ = dHoch + [µℏ − µ, ·], µℏ is the Kontsevich quantisation. It follows that

HP•(O(X)((ℏ)), πℏ)
∼−→ HH•(O(X)((ℏ)), ⋆).

See [Bel+16, Chapter II, Section 4.11] and the references therein.

A similar version involving homology is also true.

We conjecture that a similar statement involving Poisson-de Rham and Hochschild–
de Rham homology is true:

Conjecture 3.4.1. When Oℏ(X) is the Kontsevich quantisation, then

HPdR
• (X)[ℏ−1] ∼= HHdR

• (Oℏ(X))[ℏ−1].

Recall one version of the Kontsevich formality theorem says that there is a L∞

quasi-isomorphism
(Ωpoly,Lπ)

L∞−−→ Dpoly,

where Ωpoly := (
∧•
O(X)Ω

1(X))[1] is the dgla of (shifted) differential forms on X

and Dpoly := C•(Oℏ(X))[1] is the dgla of (shifted) Hochschild chains on Oℏ(X)

(computing Hochschild homology of Oℏ(X)).

It is tempting to write down a ‘proof’ of this conjecture by considering tensoring this
quasi-isomorphism with DX [[ℏ]], and get that

Ωpoly ⊗O(X)[[ℏ]] DX [[ℏ]] ∼−→ Dpoly ⊗O(X)[[ℏ]] DX [[ℏ]].

Taking H0 of both sides, we get M(X)[[ℏ]] ∼−→ Mℏ(X) and the conjecture follows.
However, this proof is wrong as the maps dπ and dHochℏ are not OX -linear hence we
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won’t get a complex of D-modules.
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Chapter 4

Quantum topology and skein
theory

4.1 Two possible approaches

Recall from the introduction we fix X := Hom(π1(T
2), SLn)///SLn

∼= Tn−1/Sn to
be the SLn-character variety of the 2-torus T . Let T be a maximal torus of SLn

and W = Sn be its Weyl group. We have the algebra of W -invariant Dq(T)W of the
(n−1)-quantum torus. Let Oℏ(X) := Dq(T)W , this is a quantisation of the character
variety. We wish to compute the zeroth Hochschild homology of this algebra.

There are two ways of looking at this, one way is by the localisation theorem of
McGerty–Nevins [MN11], which says:

Theorem 4.1.1. If A is a quantisation of O(X), ρ : X̃ → X is a symplectic
resolution and A is a quantisation of O(X̃) lifting A (i.e., that Γ(X̃,A) = A),
moreover A has finite global dimension, then there is a derived Morita equivalence
Db(A-mod) ∼= Db(A-mod).

As Hochschild homology is a Morita invariant ([Ric91], [Kel98]), we can look at
HHi(A). Analogously to Nest–Tsygan, this is HdimX−i(X̃) as X̃ is smooth sym-
plectic. In particular, HH0(A) is given by the top cohomology. However, we are not
sure if the quantisation will lift to the resolution.

Or we can look at the Hochschild–de Rham picture from the previous chapter:

Theorem 4.1.2. Let ρ : X̃ ↠ X be a projective symplectic resolution such that

• ρ∗ΩX̃
∼= M(X),
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• X has locally conical singularities.

Assume further that the quantisation A = Oℏ(X) extends to a quantisation Oℏ(X) on
a (one-parameter) smoothing X of X. Then HH0(Oℏ(X)[ℏ−1]) ∼= HdimX(X̃,C((ℏ))).

Since our X = Tn−1/Sn is a finite quotient singularity by [BS21a, Proposition 2.8],
we know that formally locally X has conical singularity by for example [BS21a, The-
orem A.1] and [Her68]. The conjecture of Etingof–Schedler holds in this case because
formally locally the singularity is a product of the singularities for the Hilbert–Chow
resolution HilbnC2 → SymnC2 and affine spaces (see later), for which we know the
conjecture holds, see [ES17, Chapter 7]. Finally recall from the introduction, the
extended quantisation on the smoothing is the spherical double affine Hecke algebra
(see [BBJ18, Section 1.5]).

4.2 Hilbert scheme

Regardless of the approach we take, we need to compute the top cohomology of the
resolution.

Let Tn := (C∗)n be the n-torus. We are interested in finding the resolution Hilbn
0 (T )

of Tn−1/Sn, where Tn−1 embeds into Tn via the map i : Tn−1 → Tn that sends

((a1, b1), . . . , (an−1, bn−1))

to
((a1, b1), . . . , (an−1, bn−1), (a

−1
1 . . . a−1n−1, b

−1
1 . . . b−1n−1)).

This can be thought as a multiplicative version of the reflection representation of Sn.

Let Cn be the cyclic group of order n. There is a Cn × Cn-covering map

f : Tn−1/Sn × T → Tn/Sn

that sends

({{(a1, b1), . . . , (an−1, bn−1)}}, (c, d))

to
{{(a1c, b1d), . . . , (an−1c, bn−1d), (a−11 . . . a−1n−1c, b

−1
1 . . . b−1n−1d)}}.

Here we are using the multi-set notation {{ }}.

The Cn×Cn action amounts to the choice of the n-th roots of a1 . . . an and b1 . . . bn.
The action is given by
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(x, y) · ({{(a1, b1), . . . , (an−1, bn−1)}}, (c, d))

= ({{(xa1, yb1), . . . , (xan−1, ybn−1)}}, (x−1c, y−1d)).

Moreover, f respects this action, with trivial action on Tn/Sn. This makes f a
Cn × Cn equivariant map.

Recall that there is a symplectic resolution ρ : Hilbn(T ) → Tn/Sn (see [FN03] and
[Fu05, Example 2.4]). As the map f is a covering, the resolution lifts as symplectic
resolution respects (étale) base change (see [BS21b, Lemma 5.2]). Furthermore, the
map ī : Tn−1/Sn → Tn/Sn induced from i : Tn−1 → Tn factors through f . In
summary, we have the following diagram:

Hilbn
0 (T )

̂Hilbn(T ) Hilbn(T )

Tn−1/Sn Tn−1/Sn × T Tn/Sn,

f̃

f

ρρ̃

where the composition of the bottom row is ī, Hilbn
0 (T ) is the pullback of the outer

square and is a symplectic resolution of Tn−1/Sn (see [BS21a, page 11]) and

̂Hilbn(T ) := Hilbn(T )×Tn/Sn
(Tn−1/Sn × T )

is the pullback of the right square and it is a symplectic resolution of Tn−1/Sn × T .

Moreover the map f̃ is also a Cn ×Cn covering. As the left square is also a pullback
square, we have:

Lemma 4.2.1.
̂Hilbn(T ) = Hilbn

0 (T )× T.

The cohomology of ̂Hilbn(T ) is related to the cohomology of the resolution Hilbn
0 (T )

of Tn−1/Sn by the Künneth formula. Let hi be the (complex) betti number of
Hilbn

0 (T ). Then
dimH2n( ̂Hilbn(T )) = h2n−2,

dimH2n−1( ̂Hilbn(T )) = 2h2n−2 + h2n−3,

dimH i( ̂Hilbn(T )) = hi + 2hi−1 + hi−2 for 2 ≤ i ≤ 2n− 2,

dimH1( ̂Hilbn(T )) = h1 + 2
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One can prove by induction that

hi =
i∑

j=0

(−1)j(j + 1) dimH i−j( ̂Hilbn(T )).

Therefore we just need to calculate dimH i( ̂Hilbn(T )).

In the paper [Nie07, Corollary 3] (proved by generalising Nakajima’s result), local
systems Lν

χ on T 2 were introduced so that we can calculate the cohomology using
the following isomorphism:

⊕
n≥0

H∗( ̂Hilbn(T ),C[2n]) ∼=
⊕

χ∈(Cn×Cn)∨

Sym(
⊕
ν≥1

H∗(T, Lν
χ[2])) (4.1)

There is an isomorphism of bi-graded vector spaces, where the first grading is by
the cohomology degree, and the second grading (called weighting) is the number of
points n on the left and H∗(T, Lν

χ) has weight ν. Note that the Sym on the right
hand side of the isomorphism is understood to be the graded symmetric power in
cohomology degree.

From this, we can compute all cohomologies of ̂Hilbn(T ). Note that

H∗(T, Lν
χ[2])

∼= H∗(S1 × S1, Lν
χ1
[1]⊠ Lν

χ2
[1])

∼= H∗(S1, Lν
χ1
[1])⊗H∗(S1, Lν

χ2
[1])

∼= δχν
1 ,1

δχν
2 ,1

(C[0]⊕ C[−1])⊗2{ν}.

Here we are using [−] for (cohomological) grading and {−} for weighting.

Identifying (Cn × Cn)
∨ ∼= Z/nZ × Z/nZ and rewriting χ = (χ1, χ2) as (a, b), the

right hand side of equation 4.1 becomes⊕
(a,b)∈(Z/nZ×Z/nZ)

Sym(
⊕
ν≥1

δaν,0δbν,0(C[0]⊕ C[−1])⊗2{ν}).

We can simplify this using elementary number theory:
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δaν,0δbν,0 is non-zero if and only if n|aν and n|bν,

if and only if
n

gcd(a, n)
|ν and

n

gcd(b, n)
|ν,

if and only if
n

gcd(a, b, n)
|ν.

Here we are taking gcd(0, n) = n and gcd(0, a, n) = gcd(a, n).

So the right hand side of equation 4.1 becomes⊕
(a,b)∈(Z/nZ×Z/nZ)

Sym(
⊕
k≥1

(C[0]⊕ C2[−1]⊕ C[−2]){k n

gcd(a, b, n)
}).

For the cohomology in top degree, we have:

⊕
n≥0

H2n( ̂Hilbn(T ),C) ∼=
⊕

(a,b)∈(Z/nZ×Z/nZ)

Sym(
⊕
k≥1

C{k n

gcd(a, b, n)
}) (4.2)

Let P(n) be the number of partitions of n. Recall the k-th Jordan’s totient function
Jk : N → N is defined as

Jk(n) = nk
∏
p|n

(
1− 1

pk

)
.

This number Jk(n) equals the number of k-tuples of positive integers that are less
than or equal to n and that together with n form a coprime set of k + 1 integers.
When k = 1, this is the usual Euler’s totient function. See [SC04, Section 3.7.1].

Furthermore, If f, g : N → C are two arithmetic functions from the positive integers
to the complex numbers, the Dirichlet convolution f ⋆ g is a new arithmetic function
defined by:

(f ⋆ g)(n) =
∑
d |n

f(d) g
(n
d

)
=

∑
ab=n

f(a) g(b),

where the sum extends over all positive divisors d of n, or equivalently over all distinct
pairs (a, b) of positive integers whose product is n. See [SC04, Section 2.2.1].

Taking weight n of equation 4.2, we get that
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Theorem 4.2.2.

dimH2n( ̂Hilbn(T )) =
∑

(a,b)∈(Z/nZ×Z/nZ)

P(gcd(a, b, n))

=
∑
d|n

P(d)J2(
n

d
)

= P ⋆ J2(n),

where J2 is the second Jordan’s totient function.

Note this has a natural (Z/nZ× Z/nZ)-grading.

For n = p a prime, this number is P(p)+p2−1. When p = 2, this gives 2+4−1 = 5.

Recall from the introduction that Sam Gunningham, David Jordan and Monica
Vazirani showed that

SkAlgSL(n)(T
2) ∼= HH0(Dq(T)W ), (4.3)

and
SkSLn(T

3) ∼= HH0(Dq(T)W )
⊕

Ck. (4.4)

It immediately follows from Theorem 4.1.2 and the above theorem:

Corollary 4.2.3.
dim SkAlgSL(n)(T

2) = P ⋆ J2(n).

Recall further that SkSL(n)(T
3) has a H1(T 3,Z/nZ) = (Z/nZ)3 grading, and there

is a mapping class group MCG(T 3) = SL(3,Z) action on SkSLn(T
3), compatible

with the grading via the quotient morphism SL(3,Z) → SL(3,Z/nZ).

Hence SkSL(n)(T
3)(a,b,0) = SkSL(n)(T

3)g·(a,b,0), for any g ∈ SL(3,Z/nZ).

We know that:

dimSkSL(n)(T
3)(a,b,0) =dim SkAlgSL(n)(T

2)(a,b)

=dimHH0(Dq(T)W )(a,b)

=P(gcd(a, b, n)),

where the first equality follows from isomorphism 4.4, the second equality follows
from isomorphism 4.3 and the last equality follows from the above corollary. We
need Theorem 4.1.2 to be an iso under group action.

An arbitrary element of (Z/nZ)3 is a translate by SL3(Z/nZ) of a weight of form
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(d, 0, 0), for some divisor d of n. Moreover, the Jordan totient function J3 (resp. J2)
arise very naturally: J3(n/d) (resp. J2(n/d)) is precisely the cardinality of the orbit
of (d, 0, 0) (resp. (d, 0)). See [NH05, Theorem 4.9].

We deduce the following beautiful equation:

Corollary 4.2.4.

dimSkSL(n)(T
3) =

∑
d|n

dim SkAlgSLn
(T 2)(d,0)J3(

n

d
)

=
∑
d|n

P(gcd(d, 0, n))J3(
n

d
)

=
∑
d|n

P(d)J3(
n

d
)

= P ⋆ J3(n).

4.3 Higher cohomology

Let Pr(m) be the set of r-component multipartitions of m, that is, an r-tuple of
partitions λ(1), . . . , λ(r), where each λ(i) is a partition of some ai and the ai sum to
m. Let Pr(m) be the size of this set.

Define the subset P (0,1,1,2)
4 (m, i) inside of P4(m) consisting elements of (λ(1), λ(2), λ(3), λ(4))

such that l(λ(2))+l(λ(3))+2l(λ(4)) = i. Let P(0,1,1,2)
4 (m, i) be the size of this subset.

To take account of graded symmetric power, we want for i = 2, 3, those partitions
λ(i) of ai such that consecutive parts of λ(i) are different. This defines P(0,1,1,2)

4,gr (m, i).

The generating polynomial for each n is a multiple of (1+ 2t+ t2), and the quotient
is the generating polynomial for hi = dimH i( ˜Tn−1/Sn).

Theorem 4.3.1. In general, for the (2n − i)th cohomology, dimH2n−i( ̂Hilbn(T ))

has the following description:

dimH2n−i( ̂Hilbn(T )) =
∑

(a,b)∈(Z/nZ×Z/nZ)

P(0,1,1,2)
4,gr (gcd(a, b, n), i).

Proof. We consider elements of the following direct sum⊕
(a,b)∈(Z/nZ×Z/nZ)

Sym(
⊕
k≥1

(Cx[0]⊕ C2
y,z[−1]⊕ Cw[−2]){k n

gcd(a, b, n)
}).
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For fixed (a, b), an element of the direct sum will have the form

xα1
1 xα2

2 . . . x
αk1
k1

. . . wδ1
1 wδ2

2 . . . w
δk4
k4

such that

β1 + · · ·+ βk2 + γ1 + · · ·+ γk3 + 2(δ1 + · · ·+ δk4) = 2n− i

and

α1+2α2 · · ·+k1αk1+β1+ · · ·+k2βk2+γ1+ · · ·+k3γk3+δ1+ · · ·+k4δk4 = gcd(a, b, n),

where βi, γi = 0 or 1 for all i. This gives the desired set.

Theorem 4.3.2. For large n, the list dimH i( ̂Hilbn(T )) (for 0 ≤ i ≤ 2n) stabilises
to the number of bi-partitions of i wherein odd parts are distinct (and even parts
are unrestricted).

This sequence is given by OEIS:A273225. Therefore, for ‘large’ n, the dimensions of
cohomology of dimH i( ̂Hilbn(T )) is given by: 1, 2, 3, 6, 11, 18, 28, 44, 69, 104...

We give two proofs, one uses an explicit bijection and the other one uses generating
function. The second proof will generalise to Hilbert scheme of points of other smooth
surfaces, see the remark below.

Proof. First we show when n is large, there are no contributions from a, b unless when
a = b = 0, in which case gcd(a, b, n) = n. Suppose a ̸= 0 ̸= b, then gcd(a, b, n) ≤ n/2.
Therefore

2n− i+ l(λ2) + l(λ3) = 2l(λ2) + 2l(λ3) + 2l(λ4) ≤ 2(a+ b+ c+ d) ≤ n.

Hence l(λ2) + l(λ3) ≤ i− n, which is impossible as soon as i < n. Therefore we can
assume a = b = 0.

Next we show that there are always n − i parts of 1’s in λ4. (Note this step is not
strictly necessary.) Assume there are n− j parts of 1’s, we want to show j ≤ i. Let
the length of λ4 be n− j + k, then d ≥ 2k + n− j, hence a+ b+ d ≤ j − 2k. Then

2n− i = l(λ2) + l(λ3) + 2l(λ4) ≤ a+ b+ d+ 2d ≤ j − 2k + 2(n− j + k),

and j ≤ i.

We can delete the n−i parts of 1’s in λ4 and hence the counting problem has become:
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4-partition (λ1, λ2, λ3, λ4) of i with λ2, λ3 distinct and

l(λ2) + l(λ3) + 2l(λ4) = i.

We want to show this is the number of bi-partitions of i wherein odd parts are
distinct.

Let λ1 = (1αi , . . . , k
αk1
1 ), . . . , λ4 = (1δi , . . . , k

δk4
4 ). Create a new bi-partition:

µ1 = (1β1 , 2α1 , 3β2 , 4α2 , . . . ),

µ2 = (1γ1 , 2δ2 , 3γ2 , 4δ3 , . . . ).

This has odd parts distinct and it is a bi-partition of

2a+ 2b− l(λ2) + 2c+ 2d− l(λ3)− 2l(λ4) = 2i− i = i.

Note that this process is clearly invertible.

We begin the other proof by writing down the generating function for both sides.

The generating function for the number of partitions of n such that the odd parts
are distinct is ∏

k≥1

1 + t2k+1

1− t2k
,

therefore the generating function for the number of bi-partitions of n such that the
odd parts are distinct is: ∏

k≥1

(1 + t2k+1)2

(1− t2k)2
.

The generating function for H i(Hilbn(T )) is:

∏
k≥1

(1 + t2k−1xk)2

(1− t2k−2xk)(1− t2kxk)
=
∑
n

fn(t)x
n,

where fn(t) =
∑

i βi(Hilbn(T ))ti is the Poincaré series for Hilbn(T ) (see [CM00,
Theorem 5.2.1]).

The left hand side is

1

1− x

∏
k≥1

(1 + t2k−1xk)2

(1− t2kxk+1)(1− t2kxk)
,
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with the coefficients of the infinite product are still positive. Writing the infinite
product as

∑
q≥0 gq(t)x

q. We have the equality:∑
p≥0

xp ·
∑
q≥0

gq(t)x
q =

∑
n

fn(t)x
n.

Collecting coefficients of xn, we have:

fn(t) =
n∑

q=0

gq(t).

Therefore as n goes to infinity,

fn→∞(t) =
∏
k≥1

(1 + t2k−1xk)2

(1− t2kxk+1)(1− t2kxk)

∣∣∣∣
x=1

=
∏
k≥1

(1 + t2k−1)2

(1− t2k)2
,

which is what we wanted.

Remark 4.3.3. The generating function approach allows us to generalise the con-
vergence of cohomology of Hilbert scheme of points on any smooth surface X. Recall
from [CM00, Theorem 5.2.1] that the generating function for H i(Hilbn(X)) is given
by

∑
n≥0

∑
i

dimH i(Hilbn(X))tixn =
∏
k≥1

(1 + t2k−1xk)β1(1 + t2k+1xk)β3

(1− t2k−2xk)β0(1− t2kxk)β2(1− t2k+2xk)β4
,

where βi is the i-th betti number of X. Using the same trick as above, we can show
that for a connected surface, the cohomology converges and has generating function:

∏
k≥1

(1 + t2k−1)β1(1 + t2k+1)β3

(1− t2k)β2+1(1− t2k+2)β4
.

The coefficients of ti have the following combinatorial description: the number of
coloured partitions of i such that

• there are β1 colours for length 1 parts,

• 1 + β2 colours for length 2 parts,

• β1 + β3 colours for odd length ≥ 3 parts,

• 1 + β2 + β4 colours for even length ≥ 4 parts,

• odd parts have distinct length.
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